Fuzzy-Constrained Incremental Random Weight Network for Industrial Process Soft Sensing

Data-driven modeling has emerged as a powerful approach for soft sensing of key performance indices in industrial processes. This approach can leverage the collected process data to establish precise soft sensors without requiring explicit physical knowledge. To cope with uncertainties and nonlinear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal Jg. 25; H. 20; S. 38154 - 38167
Hauptverfasser: Wang, Qianjin, Luo, Yunfeng, Dai, Wei, Ma, Xiaoping
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 15.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1530-437X, 1558-1748
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Data-driven modeling has emerged as a powerful approach for soft sensing of key performance indices in industrial processes. This approach can leverage the collected process data to establish precise soft sensors without requiring explicit physical knowledge. To cope with uncertainties and nonlinearities present in industrial process data, a novel fuzzy randomized incremental model named fuzzy compact constraint-based incremental random weight network (F-CCIRWN) is proposed for industrial process soft sensing by integrating the Takagi-Sugeno (T-S) fuzzy system into CCIRWN. Specifically, all inputs from the input layer are sent to a set of T-S fuzzy subsystems to enhance fuzzy reasoning capability. The defuzzification outputs produced by the fuzzy subsystem layer are directly linked to the output layer. Additionally, the fully connected layer is introduced between the fuzzy subsystem and output layers to perform nonlinear transformation. Then, the fuzzy c-means approach is adopted to estimate the clustering centers of Gaussian membership functions and determine the number of the fuzzy subsystem rules associated with the fuzzy subsystem layer. Subsequently, the Greville's method is employed to design a compact constraint that is capable of effectively choosing the well-performed random parameters in the fully connected layer. Finally, the comprehensive performance evaluation of the proposed F-CCIRWN is conducted on nonlinear dynamic system identification, chaotic time sequence prediction, and data-driven modeling based on real-world benchmark datasets and an industrial dataset. The results indicate that the proposed F-CCIRWN is more suitable for industrial process soft sensing compared to some other state-of-the-art modeling methods.
AbstractList Data-driven modeling has emerged as a powerful approach for soft sensing of key performance indices in industrial processes. This approach can leverage the collected process data to establish precise soft sensors without requiring explicit physical knowledge. To cope with uncertainties and nonlinearities present in industrial process data, a novel fuzzy randomized incremental model named fuzzy compact constraint-based incremental random weight network (F-CCIRWN) is proposed for industrial process soft sensing by integrating the Takagi-Sugeno (T-S) fuzzy system into CCIRWN. Specifically, all inputs from the input layer are sent to a set of T-S fuzzy subsystems to enhance fuzzy reasoning capability. The defuzzification outputs produced by the fuzzy subsystem layer are directly linked to the output layer. Additionally, the fully connected layer is introduced between the fuzzy subsystem and output layers to perform nonlinear transformation. Then, the fuzzy c-means approach is adopted to estimate the clustering centers of Gaussian membership functions and determine the number of the fuzzy subsystem rules associated with the fuzzy subsystem layer. Subsequently, the Greville's method is employed to design a compact constraint that is capable of effectively choosing the well-performed random parameters in the fully connected layer. Finally, the comprehensive performance evaluation of the proposed F-CCIRWN is conducted on nonlinear dynamic system identification, chaotic time sequence prediction, and data-driven modeling based on real-world benchmark datasets and an industrial dataset. The results indicate that the proposed F-CCIRWN is more suitable for industrial process soft sensing compared to some other state-of-the-art modeling methods.
Author Ma, Xiaoping
Wang, Qianjin
Luo, Yunfeng
Dai, Wei
Author_xml – sequence: 1
  givenname: Qianjin
  orcidid: 0000-0002-4076-9493
  surname: Wang
  fullname: Wang, Qianjin
  email: wangqianjinabc@163.com
  organization: School of Electrical Engineering, Yancheng Institute of Technology, Yancheng, China
– sequence: 2
  givenname: Yunfeng
  orcidid: 0009-0000-8180-9212
  surname: Luo
  fullname: Luo, Yunfeng
  email: yunfengluoabc@163.com
  organization: School of Electrical Engineering, Yancheng Institute of Technology, Yancheng, China
– sequence: 3
  givenname: Wei
  orcidid: 0000-0003-3057-7225
  surname: Dai
  fullname: Dai, Wei
  email: weidai@cumt.edu.cn
  organization: School of Information and Control Engineering and the Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology, Xuzhou, China
– sequence: 4
  givenname: Xiaoping
  orcidid: 0000-0003-1692-8797
  surname: Ma
  fullname: Ma, Xiaoping
  email: xiaopingmacumt@126.com
  organization: School of Information and Control Engineering and the Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology, Xuzhou, China
BookMark eNpFkF1PwjAUhhuDiYD-ABMvlng97OnHul0aAoghaESDd83oWhxCi-0WA7_eLZB4dc7F85w35-2hjnVWI3QLeACAs4fnxWg-IJjwAU1wkqbpBeoC52kMgqWddqc4ZlR8XqFeCBuMIRNcdNFyXB-Ph3jobKh8XlpdRFOrvN5pW-Xb6C23hdtFS12uv6porqtf578j43xDFXWjlA306p3SIUQLZ6pooW0o7foaXZp8G_TNefbRx3j0PnyKZy-T6fBxFivC0ioGpohRRJmMElUUmBAwxJh8hVeq_YblGSZCFRy4YDjjXBtmEqC0sXlmGO2j-9PdvXc_tQ6V3Lja2yZSUpIAI1yIrKHgRCnvQvDayL0vd7k_SMCy7U-2_ck2UZ77a5y7k1Nqrf95gIQmBOgfKzduGQ
CODEN ISJEAZ
Cites_doi 10.1109/JAS.2024.124578
10.1109/TCYB.2017.2734043
10.1016/j.ins.2016.12.007
10.1016/j.knosys.2021.106924
10.1016/j.asoc.2025.113623
10.1109/JSEN.2025.3538942
10.1109/TNNLS.2021.3071292
10.1109/TII.2024.3488777
10.1007/s10462-022-10188-3
10.1109/TII.2023.3297663
10.1109/JSEN.2023.3312614
10.1016/j.asoc.2023.110377
10.1109/TCYB.2019.2925883
10.1109/TSMC.2020.3013972
10.1016/j.knosys.2024.111481
10.1109/TNNLS.2020.2967816
10.1109/TIM.2024.3470037
10.1109/TNNLS.2022.3186671
10.1109/TNNLS.2023.3347767
10.1109/ISPCE-ASIA64773.2024.10756219
10.1142/S012906572150057X
10.1109/JSEN.2025.3550793
10.3390/s24123909
10.1109/TII.2019.2954351
10.1109/TCYB.2023.3263215
10.1109/TII.2023.3329684
10.1109/TFUZZ.2024.3449147
10.1109/JSEN.2024.3447730
10.1109/TII.2023.3301059
10.1109/TFUZZ.2023.3315368
10.1109/TII.2022.3181692
10.1109/TIA.2024.3462696
10.1109/TCSS.2022.3152091
10.1109/JSEN.2024.3498056
10.1109/TII.2021.3096840
10.1016/j.neucom.2024.127833
10.1007/s10462-017-9610-2
10.1109/TNNLS.2023.3334150
10.1109/TNNLS.2021.3053306
10.1109/TNNLS.2023.3289798
10.1109/TII.2024.3438234
10.1109/TII.2017.2734686
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2025.3606888
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 38167
ExternalDocumentID 10_1109_JSEN_2025_3606888
11163621
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62003293; U24A20272; 62373361
  funderid: 10.13039/501100001809
– fundername: Postgraduate Research and Practice Innovation Program of Yancheng Institute of Technology
  grantid: KYCX24-XZ014
– fundername: Qinglan Project of Jiangsu Province
– fundername: Nature Science Foundation of Jiangsu Province
  grantid: BK20240102
– fundername: Key Research and Development projects in Shanxi Province
  grantid: 202202100401002
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
M43
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c248t-14c2fc2cf932cdd0221f2ffab0bc20254a9027cd515740955ef4f613324859f43
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001594949900049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Thu Nov 20 00:53:56 EST 2025
Sat Nov 29 07:06:58 EST 2025
Sat Oct 25 03:12:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c248t-14c2fc2cf932cdd0221f2ffab0bc20254a9027cd515740955ef4f613324859f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4076-9493
0009-0000-8180-9212
0000-0003-3057-7225
0000-0003-1692-8797
PQID 3261425779
PQPubID 75733
PageCount 14
ParticipantIDs proquest_journals_3261425779
ieee_primary_11163621
crossref_primary_10_1109_JSEN_2025_3606888
PublicationCentury 2000
PublicationDate 2025-10-15
PublicationDateYYYYMMDD 2025-10-15
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
Broomhead (ref24) 1988; 2
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref3
  doi: 10.1109/JAS.2024.124578
– ident: ref27
  doi: 10.1109/TCYB.2017.2734043
– ident: ref26
  doi: 10.1016/j.ins.2016.12.007
– ident: ref28
  doi: 10.1016/j.knosys.2021.106924
– volume: 2
  start-page: 321
  year: 1988
  ident: ref24
  article-title: Multivariable functional interpolation and adaptive networks
  publication-title: Complex Syst.
– ident: ref40
  doi: 10.1016/j.asoc.2025.113623
– ident: ref2
  doi: 10.1109/JSEN.2025.3538942
– ident: ref7
  doi: 10.1109/TNNLS.2021.3071292
– ident: ref5
  doi: 10.1109/TII.2024.3488777
– ident: ref20
  doi: 10.1007/s10462-022-10188-3
– ident: ref23
  doi: 10.1109/TII.2023.3297663
– ident: ref12
  doi: 10.1109/JSEN.2023.3312614
– ident: ref25
  doi: 10.1016/j.asoc.2023.110377
– ident: ref31
  doi: 10.1109/TCYB.2019.2925883
– ident: ref1
  doi: 10.1109/TSMC.2020.3013972
– ident: ref18
  doi: 10.1016/j.knosys.2024.111481
– ident: ref33
  doi: 10.1109/TNNLS.2020.2967816
– ident: ref43
  doi: 10.1109/TIM.2024.3470037
– ident: ref17
  doi: 10.1109/TNNLS.2022.3186671
– ident: ref6
  doi: 10.1109/TNNLS.2023.3347767
– ident: ref16
  doi: 10.1109/ISPCE-ASIA64773.2024.10756219
– ident: ref41
  doi: 10.1142/S012906572150057X
– ident: ref4
  doi: 10.1109/JSEN.2025.3550793
– ident: ref22
  doi: 10.3390/s24123909
– ident: ref34
  doi: 10.1109/TII.2019.2954351
– ident: ref13
  doi: 10.1109/TCYB.2023.3263215
– ident: ref9
  doi: 10.1109/TII.2023.3329684
– ident: ref15
  doi: 10.1109/TFUZZ.2024.3449147
– ident: ref19
  doi: 10.1109/JSEN.2024.3447730
– ident: ref29
  doi: 10.1109/TII.2023.3301059
– ident: ref36
  doi: 10.1109/TFUZZ.2023.3315368
– ident: ref21
  doi: 10.1109/TII.2022.3181692
– ident: ref30
  doi: 10.1109/TIA.2024.3462696
– ident: ref10
  doi: 10.1109/TCSS.2022.3152091
– ident: ref11
  doi: 10.1109/JSEN.2024.3498056
– ident: ref32
  doi: 10.1109/TII.2021.3096840
– ident: ref38
  doi: 10.1016/j.neucom.2024.127833
– ident: ref42
  doi: 10.1007/s10462-017-9610-2
– ident: ref14
  doi: 10.1109/TNNLS.2023.3334150
– ident: ref35
  doi: 10.1109/TNNLS.2021.3053306
– ident: ref37
  doi: 10.1109/TNNLS.2023.3289798
– ident: ref39
  doi: 10.1109/TII.2024.3438234
– ident: ref8
  doi: 10.1109/TII.2017.2734686
SSID ssj0019757
Score 2.4417305
Snippet Data-driven modeling has emerged as a powerful approach for soft sensing of key performance indices in industrial processes. This approach can leverage the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 38154
SubjectTerms Adaptation models
Artificial neural networks
Chaos theory
Clustering
Compact constraint
Constraints
Data mining
Data processing
Data-driven modeling
Datasets
Dynamical systems
Fuzzy logic
Fuzzy neural networks
Greville’s method
incremental random weight network (RWN)
industrial process soft sensing
Intelligent sensors
Modelling
Nonlinear dynamics
Nonlinearity
Optimization
Performance evaluation
Performance indices
Soft sensors
Subsystems
System identification
Takagi-Sugeno model
Takagi–Sugeno (T–S) fuzzy system
Training
Title Fuzzy-Constrained Incremental Random Weight Network for Industrial Process Soft Sensing
URI https://ieeexplore.ieee.org/document/11163621
https://www.proquest.com/docview/3261425779
Volume 25
WOSCitedRecordID wos001594949900049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gQgIOPMYQg4Fy4ISUrU3TR44IbUIIVYgB261q8wAOdGgPpO3X46QZAyEO3Hpo08qu7c9O7A-hcz9QXi6kIhHXIWFKCgI4jhNZBL6KFEQIS53wdBunaTIc8jvXrG57YZRS9vCZaptLu5cvR2JmSmUdsMsIHC4kO-txHFfNWl9bBjy2Yz3Bgj3CgnjotjB9j3du-t0UUkEatoPIkKwkP4KQZVX55YptfOnt_vPL9tCOA5L4stL8PlpTZR1tfxsvWEebjuH8ZX6ABr3ZYjEnhp_TskIoicE1VMVBWOY-L-XoDQ9soRSn1dlwDIAWr7g9sGsqwH1w3bhvTr6Xzw302Os-XF0TR6pABGXJlPhMUC2o0ADchJQQwn1Ntc4LrxBGRCznkKkKCTgnZmY-ndJMQ8wPzOwzrllwiGrlqFRHCHuhguQFMFiRUJaDu2KJzKn2qSc0qD9pooullLP3anZGZnMOj2dGJZl5X-ZU0kQNI9bVjU6iTdRaKiZz5jXJAHP6xtnE_PiPx07QllndRBk_bKHadDxTp2hDfExfJ-Mz--d8Ak-FwOE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYQIAEH3ojxzIETUqBJ07U5IsTEY1SI8dit6vIADnRobEjw63HS8BLiwK2HNqnsxP4cx_4AdlhsolJpQ5vSJlQYrSjiOEl1L2amadBDeOqEm3aa51m3Ky9CsbqvhTHG-MtnZs89-ly-7quROyrbx33ZRIOLwc5EIgRndbnWZ9JApr6xJ-7hiIo47YYkJovk_mnnKMdgkCd7cdPRrGQ_3JDnVflljL2Hac3989_mYTZASXJQ634Bxky1CDPfGgwuwlTgOL9_XYLb1ujt7ZU6hk7PC2E0QeNQHw_iMJdlpfuP5NYflZK8vh1OENKSL3YPEsoKSAeNN-m4u-_V3TJct46uDo9poFWgiotsSJlQ3CquLEI3pTU6cWa5tWUv6iknIlFKjFWVRqSTCtehzlhh0evHrvuZtCJegfGqX5lVIFFiMHxBFNbLuCjRYIlMl9wyHimLCyBrwO6HlIununtG4aOOSBZOJYWbrwgqacCyE-vXi0GiDdj4UEwRNthzgaiTOXOTyrU_PtuGqeOr83bRPsnP1mHazeR8Dks2YHw4GJlNmFQvw4fnwZZfRe-EkcQo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy-Constrained+Incremental+Random+Weight+Network+for+Industrial+Process+Soft+Sensing&rft.jtitle=IEEE+sensors+journal&rft.au=Wang%2C+Qianjin&rft.au=Luo%2C+Yunfeng&rft.au=Dai%2C+Wei&rft.au=Ma%2C+Xiaoping&rft.date=2025-10-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=25&rft.issue=20&rft.spage=38154&rft.epage=38167&rft_id=info:doi/10.1109%2FJSEN.2025.3606888&rft.externalDocID=11163621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon