Quantum Reinforcement Learning for Lightweight LEO Satellite Routing
Low Earth orbit (LEO) satellite networks have emerged as a promising solution, offering advantages, such as lower propagation delay, broader coverage, and rapid deployment capabilities. However, the dynamic topology and frequent handovers inherent in LEO satellite systems, coupled with limited onboa...
Uložené v:
| Vydané v: | IEEE internet of things journal Ročník 12; číslo 14; s. 28986 - 29004 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
15.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2327-4662, 2327-4662 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Low Earth orbit (LEO) satellite networks have emerged as a promising solution, offering advantages, such as lower propagation delay, broader coverage, and rapid deployment capabilities. However, the dynamic topology and frequent handovers inherent in LEO satellite systems, coupled with limited onboard computational resources, necessitate the development of efficient and lightweight routing algorithms. Therefore, this article proposes quantum reinforcement learning-based satellite routing (QRL-SR) tailored for LEO satellite networks. The QRL-SR algorithm addresses three critical considerations: 1) adapting to the dynamic and time-varying environment of LEO satellite networks; 2) incorporating LEO satellite geometry by transforming celestial coordinate data, specifically two-line element, into orbital coordinate systems for accurate LEO satellite positioning over time; and 3) being designed to be lightweight by leveraging QRL to reduce the number of training parameters. The proposed QRL-SR efficiently trains routing policies with fewer parameters, aligning with LEO satellites' small-size, weight, and power (SWaP) constraints. The primary purpose of the QRL-SR-based LEO satellites is to reduce free space path loss, delay time, and the number of hops needed for routing through the intersatellite links. Finally, experimental results demonstrate that the QRL-SR achieves routing performance comparable to or outperforms conventional algorithms while significantly reducing computational resources. |
|---|---|
| AbstractList | Low Earth orbit (LEO) satellite networks have emerged as a promising solution, offering advantages, such as lower propagation delay, broader coverage, and rapid deployment capabilities. However, the dynamic topology and frequent handovers inherent in LEO satellite systems, coupled with limited onboard computational resources, necessitate the development of efficient and lightweight routing algorithms. Therefore, this article proposes quantum reinforcement learning-based satellite routing (QRL-SR) tailored for LEO satellite networks. The QRL-SR algorithm addresses three critical considerations: 1) adapting to the dynamic and time-varying environment of LEO satellite networks; 2) incorporating LEO satellite geometry by transforming celestial coordinate data, specifically two-line element, into orbital coordinate systems for accurate LEO satellite positioning over time; and 3) being designed to be lightweight by leveraging QRL to reduce the number of training parameters. The proposed QRL-SR efficiently trains routing policies with fewer parameters, aligning with LEO satellites’ small-size, weight, and power (SWaP) constraints. The primary purpose of the QRL-SR-based LEO satellites is to reduce free space path loss, delay time, and the number of hops needed for routing through the intersatellite links. Finally, experimental results demonstrate that the QRL-SR achieves routing performance comparable to or outperforms conventional algorithms while significantly reducing computational resources. |
| Author | Kim, Joongheon Seon Kim, Gyu Lee, Sungjoon Cho, In-Sop Park, Soohyun |
| Author_xml | – sequence: 1 givenname: Gyu orcidid: 0000-0002-5559-9749 surname: Seon Kim fullname: Seon Kim, Gyu email: kingdom0545@korea.ac.kr organization: Department of Electrical and Computer Engineering, Korea University, Seoul, South Korea – sequence: 2 givenname: Sungjoon orcidid: 0009-0006-0713-8223 surname: Lee fullname: Lee, Sungjoon email: ssungjoon@korea.ac.kr organization: Department of Electrical and Computer Engineering, Korea University, Seoul, South Korea – sequence: 3 givenname: In-Sop orcidid: 0000-0002-1373-3479 surname: Cho fullname: Cho, In-Sop email: lookatstar@etri.re.kr organization: Satellite Communication Infra Research Section, Electronics and Telecommunications Research Institute, Daejeon, South Korea – sequence: 4 givenname: Soohyun orcidid: 0000-0002-6556-9746 surname: Park fullname: Park, Soohyun email: soohyun.park@sookmyung.ac.kr organization: Division of Computer Science, Sookmyung Women's University, Seoul, South Korea – sequence: 5 givenname: Joongheon orcidid: 0000-0003-2126-768X surname: Kim fullname: Kim, Joongheon email: joongheon@korea.ac.kr organization: Department of Electrical and Computer Engineering, Korea University, Seoul, South Korea |
| BookMark | eNpNkFFLwzAQx4NMcM59AMGHgM-dSZqkzaPMqZNCcc7nkMbL7NjSmaaI396W7WEvd8fx-9_B7xqNfOMBoVtKZpQS9fC2LNczRpiYpULmXPALNGYpyxIuJRudzVdo2rZbQkgfE1TJMXp674yP3R6voPauCRb24CMuwARf-w3uV7ioN9_xF4aKi0WJP0yE3a6OgFdNF3vqBl06s2theuoT9Pm8WM9fk6J8Wc4fi8QynseEUlNx1z92StrMCZWllqhMUZVVBHLKTS6NldJB6nJWUStAMvtVWcJUlfX0BN0f7x5C89NBG_W26YLvX-qUsVwISeVA0SNlQ9O2AZw-hHpvwp-mRA--9OBLD770yVefuTtmagA445XinNH0HyCdZ4c |
| CODEN | IITJAU |
| Cites_doi | 10.1109/ICUFN49451.2021.9528698 10.1109/tiv.2024.3472213 10.1109/90.993300 10.1109/taes.2025.3556050 10.1109/TMC.2024.3407883 10.1109/TMC.2018.2831679 10.1109/CDC.2013.6760239 10.1145/3583780.3615240 10.23919/ACC50511.2021.9482961 10.1109/WCSP.2009.5371599 10.1109/TNSE.2024.3384452 10.1109/TVT.2021.3058126 10.1109/JIOT.2024.3468642 10.1109/ACCESS.2020.3010470 10.1038/nature01494 10.1109/TAES.2024.3415571 10.1038/s41586-021-03332-6 10.1109/TNSE.2023.3313119 10.1109/ELMAR.2006.329572 10.23919/ICACT60172.2024.10471942 10.1109/VTC2021-Fall52928.2021.9625325 10.1109/IWSSC.2007.4409398 10.1038/nature14236 10.1109/GLOBECOM46510.2021.9685686 10.1109/JIOT.2023.3234911 10.1109/TSMCB.2008.925743 10.1109/JIOT.2024.3450851 10.1109/JIOT.2024.3424782 10.1109/TMC.2023.3300314 10.1109/TNSM.2022.3186716 10.1109/JIOT.2020.3015995 10.1109/JIOT.2023.3321574 10.1109/TWC.2022.3144189 10.2307/1784698 10.1109/TNSM.2023.3274638 10.1109/JIOT.2020.3048818 10.1109/TMC.2024.3359759 10.1109/JPROC.2011.2158378 10.1109/ACCESS.2022.3194050 10.1109/TVT.2024.3470075 10.1109/JIOT.2024.3403756 10.22331/q-2022-03-30-677 10.1109/TVT.2022.3225666 10.1109/TVT.2023.3296893 10.1109/TMC.2024.3380891 10.1109/MCOM.020.2300199 10.1007/BF00992696 10.1109/TVT.2022.3217952 10.1109/JIOT.2023.3282908 10.1109/TVT.2024.3373901 10.1109/TMC.2022.3215976 10.1109/ICASSP49660.2025.10889145 10.1109/JIOT.2020.2997336 10.1109/MCOM.010.2400001 10.1109/MSN.2015.18 10.1109/PCCC.2017.8280463 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2025.3568454 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 29004 |
| ExternalDocumentID | 10_1109_JIOT_2025_3568454 10994421 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Interior and Safety (MOIS) grantid: 2022-MOIS37-005 – fundername: Institute for Information and Communications Technology Planning and Evaluation (IITP) Grant – fundername: Ministry of Science and ICT (MSIT) for Quantum AI Empowered Second-Life Platform Technology grantid: RS-2024-00439803 (SW Star Laboratory) – fundername: Intelligent Technology Development Program on Disaster Response and Emergency Management |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c248t-11ab4f051f96c7f5973c0979197b0e814a86ac66fe3f82b1c5e62cdbc029b7973 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001526844600024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4662 |
| IngestDate | Thu Nov 20 16:50:48 EST 2025 Sat Nov 29 07:46:01 EST 2025 Wed Jul 16 07:56:28 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c248t-11ab4f051f96c7f5973c0979197b0e814a86ac66fe3f82b1c5e62cdbc029b7973 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1373-3479 0000-0002-5559-9749 0009-0006-0713-8223 0000-0003-2126-768X 0000-0002-6556-9746 |
| PQID | 3228556167 |
| PQPubID | 2040421 |
| PageCount | 19 |
| ParticipantIDs | ieee_primary_10994421 proquest_journals_3228556167 crossref_primary_10_1109_JIOT_2025_3568454 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-15 |
| PublicationDateYYYYMMDD | 2025-07-15 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 (ref43) 2024 ref59 ref14 ref53 ref52 ref11 ref55 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 (ref44) 2024 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Konda (ref54) ref24 ref23 ref26 ref25 ref20 ref22 ref21 Mnih (ref58); 48 ref28 ref27 ref29 ref60 |
| References_xml | – ident: ref40 doi: 10.1109/ICUFN49451.2021.9528698 – ident: ref51 doi: 10.1109/tiv.2024.3472213 – ident: ref20 doi: 10.1109/90.993300 – ident: ref52 doi: 10.1109/taes.2025.3556050 – ident: ref49 doi: 10.1109/TMC.2024.3407883 – ident: ref7 doi: 10.1109/TMC.2018.2831679 – ident: ref50 doi: 10.1109/CDC.2013.6760239 – ident: ref41 doi: 10.1145/3583780.3615240 – ident: ref46 doi: 10.23919/ACC50511.2021.9482961 – start-page: 1008 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS) ident: ref54 article-title: Actor-critic algorithms – ident: ref34 doi: 10.1109/WCSP.2009.5371599 – ident: ref25 doi: 10.1109/TNSE.2024.3384452 – ident: ref22 doi: 10.1109/TVT.2021.3058126 – ident: ref28 doi: 10.1109/JIOT.2024.3468642 – ident: ref15 doi: 10.1109/ACCESS.2020.3010470 – ident: ref42 doi: 10.1038/nature01494 – ident: ref18 doi: 10.1109/TAES.2024.3415571 – ident: ref57 doi: 10.1038/s41586-021-03332-6 – ident: ref21 doi: 10.1109/TNSE.2023.3313119 – ident: ref33 doi: 10.1109/ELMAR.2006.329572 – ident: ref38 doi: 10.23919/ICACT60172.2024.10471942 – volume: 48 start-page: 1928 volume-title: Proc. Int. Conf. Mach. Learn. (ICML) ident: ref58 article-title: Asynchronous methods for deep reinforcement learning – volume-title: Space-track. year: 2024 ident: ref44 – ident: ref27 doi: 10.1109/VTC2021-Fall52928.2021.9625325 – ident: ref35 doi: 10.1109/IWSSC.2007.4409398 – ident: ref60 doi: 10.1038/nature14236 – ident: ref23 doi: 10.1109/GLOBECOM46510.2021.9685686 – ident: ref31 doi: 10.1109/JIOT.2023.3234911 – volume-title: Celestrack. year: 2024 ident: ref43 – ident: ref48 doi: 10.1109/TSMCB.2008.925743 – ident: ref11 doi: 10.1109/JIOT.2024.3450851 – ident: ref10 doi: 10.1109/JIOT.2024.3424782 – ident: ref13 doi: 10.1109/TMC.2023.3300314 – ident: ref5 doi: 10.1109/TNSM.2022.3186716 – ident: ref3 doi: 10.1109/JIOT.2020.3015995 – ident: ref4 doi: 10.1109/JIOT.2023.3321574 – ident: ref17 doi: 10.1109/TWC.2022.3144189 – ident: ref47 doi: 10.2307/1784698 – ident: ref39 doi: 10.1109/TNSM.2023.3274638 – ident: ref2 doi: 10.1109/JIOT.2020.3048818 – ident: ref8 doi: 10.1109/TMC.2024.3359759 – ident: ref37 doi: 10.1109/JPROC.2011.2158378 – ident: ref45 doi: 10.1109/ACCESS.2022.3194050 – ident: ref26 doi: 10.1109/TVT.2024.3470075 – ident: ref29 doi: 10.1109/JIOT.2024.3403756 – ident: ref55 doi: 10.22331/q-2022-03-30-677 – ident: ref19 doi: 10.1109/TVT.2022.3225666 – ident: ref12 doi: 10.1109/TVT.2023.3296893 – ident: ref24 doi: 10.1109/TMC.2024.3380891 – ident: ref16 doi: 10.1109/MCOM.020.2300199 – ident: ref59 doi: 10.1007/BF00992696 – ident: ref9 doi: 10.1109/TVT.2022.3217952 – ident: ref30 doi: 10.1109/JIOT.2023.3282908 – ident: ref14 doi: 10.1109/TVT.2024.3373901 – ident: ref53 doi: 10.1109/TMC.2022.3215976 – ident: ref56 doi: 10.1109/ICASSP49660.2025.10889145 – ident: ref6 doi: 10.1109/JIOT.2020.2997336 – ident: ref1 doi: 10.1109/MCOM.010.2400001 – ident: ref36 doi: 10.1109/MSN.2015.18 – ident: ref32 doi: 10.1109/PCCC.2017.8280463 |
| SSID | ssj0001105196 |
| Score | 2.3589573 |
| Snippet | Low Earth orbit (LEO) satellite networks have emerged as a promising solution, offering advantages, such as lower propagation delay, broader coverage, and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 28986 |
| SubjectTerms | Algorithms Coordinates Deep learning Delay time Earth Handover Heuristic algorithms Intersatellite communications LEO satellite Lightweight low Earth orbit (LEO) satellite routing algorithm Low earth orbit satellites Low earth orbits Onboard equipment Parameters Planetary orbits quantum reinforcement learning (QRL) Rocket launches Routing Satellite networks Satellites Space vehicles Topology Training |
| Title | Quantum Reinforcement Learning for Lightweight LEO Satellite Routing |
| URI | https://ieeexplore.ieee.org/document/10994421 https://www.proquest.com/docview/3228556167 |
| Volume | 12 |
| WOSCitedRecordID | wos001526844600024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLagYmChHEUUCvLAhJQ2Tn2OCFoBqlqOgrpFjusgBlrUJvD38XNcAUIMbFH0Elmfr_e9E6HTJMkJg8XLTG4iqrWItNOUI2oY1W7k0vhcmKeBGA7lZKJuQ7K6z4Wx1vrgM9uGR-_Ln85NCaayDnhxKIW08XUheJWs9WVQIaCN8OC5dKKdm-vR2DHAhLW7jEvK6I-7xzdT-XUC-2ulX__ngLbRVtAf8Xk14Ttozc52UX3VmwGHrbqHLu9Kh1n5iu-tr41qvBkQh3Kqz9i9wgMg5h_eNooHvRF-0L48Z2ExxAk5qQZ67PfGF1dR6JgQmYTKIiJEZzR3OOSKG5E7stA1sRKKKJHFVhKqJdeG89x2c5lkxDDLEzPNTJyoTDjpfVSbzWf2AHK5TaKkUwaInFKilHb0VUPIsuN3tqtJE52tsEzfqsIYqScUsUoB-BSATwPwTdQA8L4JVrg1UWsFfxr2zjJ1R4yEpp1cHP7x2RHahL-DiZWwFqoVi9Ieow3zXrwsFyd-WXwCi4O17Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8IwGG8MmuhFfGBEUXvwZDJYu25rj0YhoBN8oOG2dKUzHgQDm_779islaowHb8vyLWt-fX2_74nQKaU5CWHxhipXHpMy9qTRlD2mQibNyLmyuTBPSdzv89FI3LpkdZsLo7W2wWe6CY_Wlz-eqhJMZS3w4jAGaeOr0DrLpWt9mVQI6COR810a4dZVbzA0HJCGzSCMOAvZj9vHtlP5dQbbi6VT_eeQttCm0yDx-WLKt9GKnuyg6rI7A3abdRdd3pUGtfIV32tbHVVZQyB2BVWfsXmFE6DmH9Y6ipP2AD9IW6Cz0BgihYxUDT122sOLrud6JniKMl54hMiM5QaHXEQqzg1dCJQvYkFEnPmaEyZ5JFUU5TrIOc2ICnVE1ThTPhVZbKT3UGUyneh9yOZWVHCjDhA-ZkQIaQishKBlw_B0IEkdnS2xTN8WpTFSSyl8kQLwKQCfOuDrqAbgfRNc4FZHjSX8qds989QcMhzadkbxwR-fnaD17vAmSZNe__oQbcCfwOBKwgaqFLNSH6E19V68zGfHdol8AjR9uTY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Reinforcement+Learning+for+Lightweight+LEO+Satellite+Routing&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Seon+Kim%2C+Gyu&rft.au=Lee%2C+Sungjoon&rft.au=Cho%2C+In-Sop&rft.au=Park%2C+Soohyun&rft.date=2025-07-15&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=12&rft.issue=14&rft.spage=28986&rft.epage=29004&rft_id=info:doi/10.1109%2FJIOT.2025.3568454&rft.externalDocID=10994421 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |