Numerical computation of fractional Black–Scholes equation arising in financial market

The aim of present paper is to present a numerical algorithm for time-fractional Black–Scholes equation with boundary condition for a European option problem by using homotopy perturbation method and homotopy analysis method. The fractional derivative is described in the Caputo sense. The methods gi...

Full description

Saved in:
Bibliographic Details
Published in:Egyptian Journal of Basic and Applied Sciences Vol. 1; no. 3-4; pp. 177 - 183
Main Authors: Kumar, Sunil, Kumar, Devendra, Singh, Jagdev
Format: Journal Article
Language:English
Published: Elsevier B.V 01.12.2014
Taylor & Francis
Subjects:
ISSN:2314-808X, 2314-808X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The aim of present paper is to present a numerical algorithm for time-fractional Black–Scholes equation with boundary condition for a European option problem by using homotopy perturbation method and homotopy analysis method. The fractional derivative is described in the Caputo sense. The methods give an analytic solution in the form of a convergent series with easily computable components, requiring no linearization or small perturbation. The methods show improvements over existing analytical techniques. Two examples are given and show that the homotopy perturbation method and homotopy analysis method are very effective and convenient overcomes the difficulty of traditional methods. The numerical results show that the approaches are easy to implement and accurate when applied to time-fractional Black–Scholes equation. •We consider a fractional model of Black–Scholes equation.•The HPM and HAM are applied to obtain the solution of the problem.•The results obtained by HPM and HAM are in excellent agreement.•The numerical results show that the techniques are easy to implement and accurate.
AbstractList The aim of present paper is to present a numerical algorithm for time-fractional Black–Scholes equation with boundary condition for a European option problem by using homotopy perturbation method and homotopy analysis method. The fractional derivative is described in the Caputo sense. The methods give an analytic solution in the form of a convergent series with easily computable components, requiring no linearization or small perturbation. The methods show improvements over existing analytical techniques. Two examples are given and show that the homotopy perturbation method and homotopy analysis method are very effective and convenient overcomes the difficulty of traditional methods. The numerical results show that the approaches are easy to implement and accurate when applied to time-fractional Black–Scholes equation. •We consider a fractional model of Black–Scholes equation.•The HPM and HAM are applied to obtain the solution of the problem.•The results obtained by HPM and HAM are in excellent agreement.•The numerical results show that the techniques are easy to implement and accurate.
The aim of present paper is to present a numerical algorithm for time-fractional Black-Scholes equation with boundary condition for a European option problem by using homotopy perturbation method and homotopy analysis method. The fractional derivative is described in the Caputo sense. The methods give an analytic solution in the form of a convergent series with easily computable components, requiring no linearization or small perturbation. The methods show improvements over existing analytical techniques. Two examples are given and show that the homotopy perturbation method and homotopy analysis method are very effective and convenient overcomes the difficulty of traditional methods. The numerical results show that the approaches are easy to implement and accurate when applied to time-fractional Black-Scholes equation.
Author Singh, Jagdev
Kumar, Devendra
Kumar, Sunil
Author_xml – sequence: 1
  givenname: Sunil
  surname: Kumar
  fullname: Kumar, Sunil
  email: skumar.math@nitjsr.ac.in
  organization: Department of Mathematics, National Institute of Technology, Jamshedpur, 831014, Jharkhand, India
– sequence: 2
  givenname: Devendra
  surname: Kumar
  fullname: Kumar, Devendra
  email: devendra.maths@gmail.com
  organization: Department of Mathematics, JECRC University, Jaipur, 303905, Rajasthan, India
– sequence: 3
  givenname: Jagdev
  surname: Singh
  fullname: Singh, Jagdev
  email: jagdevsinghrathore@gmail.com
  organization: Department of Mathematics, Jagan Nath University, Jaipur, 303901, Rajasthan, India
BookMark eNqFkE1OwzAQhS1UJErhBGxygRZPnDTOAiSo-JMqWABSd5brjMFtahc7BXXHHbghJ8ElLBCLsprRzLynN98-6VhnkZAjoAOgMDyeDXA2lWGQUsjiZEAp2yHdlEHW55RPOr_6PXIYwoxSCmVKs4x3yeR2tUBvlKwT5RbLVSMb42zidKK9VJs-bs5rqeaf7x_36tnVGBJ8WbVn0ptg7FNibKKNlVaZeL2Qfo7NAdnVsg54-FN75PHy4mF03R_fXd2MzsZ9lWac9RFAA0gsM1lgJQuOBVLQKoUpZyqHtISc5cBTrRXPeTGkZQm00BXLhpBXkvVI2foq70LwqIUy7RONl6YWQMWGkpiJb0piQ2kzjJSilv3RLr2J8df_qE5blbHa-YV8c76uRCPXtfMRWoQQBNtucNIaYOTyatCLoAxahZXxqBpRObM1wBeWzJsG
CitedBy_id crossref_primary_10_1007_s12190_020_01467_9
crossref_primary_10_1134_S1995080219020082
crossref_primary_10_1155_2020_8047347
crossref_primary_10_1108_EC_08_2023_0452
crossref_primary_10_1177_1077546317729972
crossref_primary_10_1186_s13662_016_0792_8
crossref_primary_10_1007_s10614_023_10386_3
crossref_primary_10_1080_00207160_2021_2011248
crossref_primary_10_1155_2021_7767848
crossref_primary_10_1002_mma_10717
crossref_primary_10_1007_s10614_023_10441_z
crossref_primary_10_1016_j_camwa_2018_12_007
crossref_primary_10_1088_1674_1056_ac9368
crossref_primary_10_1007_s10614_025_10853_z
crossref_primary_10_1016_j_chaos_2021_111280
crossref_primary_10_1063_5_0269370
crossref_primary_10_1016_j_cnsns_2020_105345
crossref_primary_10_4236_jmf_2022_124036
crossref_primary_10_1186_s40064_016_1947_5
crossref_primary_10_1002_mma_8924
crossref_primary_10_1016_j_apnum_2021_03_017
crossref_primary_10_1007_s40995_017_0244_7
crossref_primary_10_1186_s13662_019_2453_1
crossref_primary_10_1155_2021_5511396
crossref_primary_10_1108_EC_10_2024_0932
crossref_primary_10_1016_j_apnum_2019_11_004
crossref_primary_10_1016_j_camwa_2016_02_007
crossref_primary_10_1142_S0129183125500263
crossref_primary_10_1007_s40314_022_01853_y
crossref_primary_10_1016_j_cam_2017_03_011
crossref_primary_10_1007_s40314_020_01306_4
crossref_primary_10_1515_phys_2022_0069
crossref_primary_10_1016_j_physa_2019_122040
crossref_primary_10_1080_07362994_2020_1797508
crossref_primary_10_1002_mma_4638
crossref_primary_10_1088_1742_6596_2199_1_012008
crossref_primary_10_1007_s11075_023_01563_4
crossref_primary_10_1016_j_camwa_2016_04_008
crossref_primary_10_1155_2020_1942762
crossref_primary_10_1016_j_apnum_2021_02_009
crossref_primary_10_1155_2022_5670482
crossref_primary_10_1155_2023_6092283
crossref_primary_10_1186_s13662_020_02554_8
crossref_primary_10_1007_s40314_021_01634_z
crossref_primary_10_1155_2022_2613133
crossref_primary_10_1002_mma_10168
crossref_primary_10_3390_sym17081173
crossref_primary_10_1016_j_chaos_2017_05_042
crossref_primary_10_1186_s13662_018_1680_1
crossref_primary_10_3934_math_2025560
crossref_primary_10_1007_s42452_018_0106_8
Cites_doi 10.1023/A:1008304132308
10.1016/j.cnsns.2009.11.011
10.1016/j.camwa.2008.02.005
10.1201/9780203491164
10.1016/j.ijheatmasstransfer.2005.01.005
10.1142/S0217979206033796
10.1016/S0020-7225(03)00281-7
10.1016/j.cam.2011.01.018
10.1016/j.camwa.2008.02.010
10.1016/0020-7462(94)00054-E
10.1016/j.advwatres.2009.09.003
10.1016/j.na.2009.03.026
10.1088/0253-6102/53/6/02
10.1007/s11071-005-7346-z
10.1016/j.mcm.2008.01.005
10.1080/00949650903074603
10.1016/S0020-7462(98)00085-7
10.1016/j.aml.2008.04.002
10.1016/S0045-7825(99)00018-3
10.1086/260062
10.1016/S0096-3003(02)00790-7
10.1006/jsvi.1999.2509
10.1016/S0022-247X(02)00434-1
10.1016/j.mcm.2009.05.019
10.1016/j.chaos.2005.03.006
10.1016/S0168-9274(03)00070-9
ContentType Journal Article
Copyright 2014 Mansoura University
2014 Mansoura University 2014
Copyright_xml – notice: 2014 Mansoura University
– notice: 2014 Mansoura University 2014
DBID 6I.
AAFTH
0YH
AAYXX
CITATION
DOI 10.1016/j.ejbas.2014.10.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Taylor & Francis Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2314-808X
EndPage 183
ExternalDocumentID 10_1016_j_ejbas_2014_10_003
12056217
S2314808X14000438
Genre Original Article
GroupedDBID 0SF
0YH
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
IXB
KQ8
KTTOD
M41
M4Z
NCXOZ
OK1
RIG
ROL
SSZ
0R~
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
AQTUD
TDBHL
AAYXX
CITATION
ID FETCH-LOGICAL-c2483-e11f11ae94a7eda78e7e01fc21b83c51291535182ffc85876099107fd34615da3
IEDL.DBID 0YH
ISSN 2314-808X
IngestDate Sat Nov 29 03:51:37 EST 2025
Tue Nov 18 22:26:16 EST 2025
Mon Oct 20 23:49:21 EDT 2025
Thu Jul 20 20:03:29 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3-4
Keywords European option pricing
Black–Scholes equation
Homotopy analysis method
Homotopy perturbation method
35A20
Fractional derivatives
Analytical solution
34A08
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
open-access: http://creativecommons.org/licenses/by-nc-nd/3.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2483-e11f11ae94a7eda78e7e01fc21b83c51291535182ffc85876099107fd34615da3
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1016/j.ejbas.2014.10.003
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_ejbas_2014_10_003
elsevier_sciencedirect_doi_10_1016_j_ejbas_2014_10_003
crossref_primary_10_1016_j_ejbas_2014_10_003
informaworld_taylorfrancis_310_1016_j_ejbas_2014_10_003
PublicationCentury 2000
PublicationDate 12/1/2014
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 12/1/2014
  day: 01
PublicationDecade 2010
PublicationTitle Egyptian Journal of Basic and Applied Sciences
PublicationYear 2014
Publisher Elsevier B.V
Taylor & Francis
Publisher_xml – name: Elsevier B.V
– name: Taylor & Francis
References Podlubny (bib17) 2002; 5
Yildirim, Kocak (bib23) 2009; 32
Yildirim, Gulkanat (bib24) 2010; 53
Liao (bib31) 2005; 48
Bohner, Zheng (bib4) 2009; 22
Khan, Ara, Mahmood (bib26) 2010; 8
Hayat, Khan (bib33) 2005; 4
Fabiao, Grossinho, Simoes (bib8) 2009; 71
Gazizov, Ibragimov (bib3) 1998; 17
Black, Scholes (bib1) 1973; 81
Kheiri, Alipour, Dehgani (bib35) 2011; 5
Manale, Mahomed (bib2) 2000
Abdulaziz, Hasim, Ismail (bib25) 2009; 49
He (bib21) 2006; 20
Shidfar, Molabahrami (bib34) 2010; 15
Liao (bib30) 1995; 30
He (bib20) 2000; 35
Gülkaç (bib12) 2010; 80
He (bib18) 1999; 178
Hayat, Khan, Ayub (bib32) 2004; 42
Mittag-Leffler (bib37) 1903; 137
Cen, Le (bib6) 2011; 235
Oldham, Spanier (bib13) 1974
Podlubny (bib15) 1999
Miller, Ross (bib14) 2003
He (bib19) 2005; 26
Liao (bib29) 2005; 48
Amster, Averbuj, Mariani (bib10) 2003; 47
Ankudinova, Ehrhardt (bib11) 2008; 56
Caputo (bib36) 1969
Kilbas, Srivastava, Trujillo (bib16) 2006
Liao (bib27) 2003
Company, Navarro, Pintos, Ponsoda (bib5) 2008; 56
Company, Jódar, Pintos (bib7) 2009; 50
He (bib22) 2000; 229
Amster, Averbuj, Mariani (bib9) 2002; 276
Liao (bib28) 2004; 147
Mittag-Leffler G.M. (bib37) 1903; 137
bib14
bib36
bib15
bib12
bib34
bib13
Kheiri H. (bib35) 2011; 5
bib10
bib32
bib11
bib33
bib30
bib31
bib29
Khan N.A. (bib26) 2010; 8
bib27
bib28
Manale J.M. (bib2) 2000
Podlubny I. (bib17) 2002; 5
bib25
bib23
bib24
bib21
bib22
bib20
bib9
bib7
bib8
bib5
bib18
bib6
bib19
bib3
bib16
bib4
bib1
References_xml – volume: 42
  start-page: 125
  year: 2004
  end-page: 135
  ident: bib32
  article-title: On the explicit solutions of an Oldroyd 6-constant fluid
  publication-title: Int J Eng Sci
– volume: 49
  start-page: 136
  year: 2009
  end-page: 145
  ident: bib25
  article-title: Approximate analytical solution to fractional modified KdV equations
  publication-title: Math Comput Model
– volume: 56
  start-page: 813
  year: 2008
  end-page: 821
  ident: bib5
  article-title: Numerical solution of linear and nonlinear Black-Scholes option pricing equations
  publication-title: Comput Math Appl
– volume: 30
  start-page: 371
  year: 1995
  end-page: 380
  ident: bib30
  article-title: An approximate solution technique not depending on small parameters: a special example
  publication-title: Int J Non Linear Mech
– volume: 229
  start-page: 1257
  year: 2000
  end-page: 1263
  ident: bib22
  article-title: A new perturbation technique which is also valid for large parameters
  publication-title: J Sound Vibration
– volume: 4
  start-page: 395
  year: 2005
  end-page: 405
  ident: bib33
  article-title: Homotopy solution for generalized second-grade fluid fast porous plate
  publication-title: Nonlinear Dyn
– volume: 50
  start-page: 910
  year: 2009
  end-page: 920
  ident: bib7
  article-title: A numerical method for European option pricing with transaction costs nonlinear equation
  publication-title: Math Comput Model
– volume: 8
  start-page: A 19
  year: 2010
  ident: bib26
  article-title: Approximate solution of time fractional chemical engineering equation: a comparative study
  publication-title: Int J Chem Rect Eng
– volume: 71
  start-page: 4624
  year: 2009
  end-page: 4631
  ident: bib8
  article-title: Positive solutions of a Dirichlet problem for a stationary nonlinear Black Scholes equation
  publication-title: Nonlinear Anal
– volume: 276
  start-page: 231
  year: 2002
  end-page: 238
  ident: bib9
  article-title: Solutions to a stationary nonlinear Black–Scholes type equation
  publication-title: J Math Anal Appl
– year: 1969
  ident: bib36
  article-title: Elasticita e Dissipazione
– volume: 137
  start-page: 554
  year: 1903
  end-page: 558
  ident: bib37
  article-title: Sur la nouvelle fonction E
  publication-title: CR Acad Sci Paris (Ser.II)
– year: 2006
  ident: bib16
  article-title: Theory and applications of fractional differential equations
– start-page: 210
  year: 2000
  end-page: 220
  ident: bib2
  article-title: A simple formula for valuing American and European call and put options
  publication-title: Proceeding of the Hanno Rund workshop on the differential equations
– volume: 20
  start-page: 1141
  year: 2006
  end-page: 1199
  ident: bib21
  article-title: Some asymptotic methods for strongly nonlinear equations
  publication-title: Inter J Mod Phys B
– year: 2003
  ident: bib14
  article-title: An introduction to the fractional calculus and fractional differential equations
– volume: 5
  start-page: 367
  year: 2002
  end-page: 386
  ident: bib17
  article-title: Geometric and physical interpretation of fractional integration and fractional differentiation
  publication-title: Fract Calc Appl Anal
– volume: 53
  start-page: 1005
  year: 2010
  ident: bib24
  article-title: Analytical approach to fractional Zakharov–Kuznetsov equations by He's homotopy perturbation method
  publication-title: Commun Theor Phys
– volume: 235
  start-page: 3728
  year: 2011
  end-page: 3733
  ident: bib6
  article-title: A robust and accurate finite difference method for a generalized Black Scholes equation
  publication-title: J Comput Appl Math
– volume: 35
  start-page: 37
  year: 2000
  end-page: 43
  ident: bib20
  article-title: A coupling method of homotopy technique and perturbation technique for nonlinear problems
  publication-title: Int J Nonlinear Mech
– volume: 26
  start-page: 695
  year: 2005
  end-page: 700
  ident: bib19
  article-title: Application of homotopy perturbation method to nonlinear wave equations
  publication-title: Chaos Solitons Fractals
– volume: 80
  start-page: 1349
  year: 2010
  end-page: 1354
  ident: bib12
  article-title: The homotopy perturbation method for the Black-Scholes equation
  publication-title: J Stat Comput Simul
– volume: 147
  start-page: 499
  year: 2004
  end-page: 513
  ident: bib28
  article-title: On the homotopy analysis method for nonlinear problems
  publication-title: Appl Math Comput
– year: 1974
  ident: bib13
  article-title: The fractional calculus
– volume: 178
  start-page: 257
  year: 1999
  end-page: 262
  ident: bib18
  article-title: Homotopy perturbation technique
  publication-title: Comput Methods Appl Mech Engrg
– volume: 32
  start-page: 1711
  year: 2009
  end-page: 1716
  ident: bib23
  article-title: Homotopy perturbation method for solving the space–time fractional advection-dispersion equation
  publication-title: Adv Water Resour
– volume: 48
  start-page: 2529
  year: 2005
  end-page: 2539
  ident: bib31
  article-title: A new branch of solutions of boundary-layer flows over an impermeable stretched plane
  publication-title: Int J Heat Mass Transf
– volume: 22
  start-page: 309
  year: 2009
  end-page: 313
  ident: bib4
  article-title: On analytical solution of the Black-Scholes equation
  publication-title: Appl Math Lett
– volume: 48
  start-page: 2529
  year: 2005
  end-page: 2539
  ident: bib29
  article-title: A new branch of solutions of boundary-layer flows over an impermeable stretched plate
  publication-title: Int J Heat Mass Transf
– volume: 81
  start-page: 637
  year: 1973
  end-page: 654
  ident: bib1
  article-title: The pricing of options and corporate liabilities
  publication-title: J Polit Econ
– volume: 5
  start-page: 33
  year: 2011
  end-page: 50
  ident: bib35
  article-title: Homotopy analysis and Homotopy-Pade methods for the modified Burgers-Korteweg-de-Vries and the Newell Whitehead equation
  publication-title: Math Sci
– volume: 15
  start-page: 2908
  year: 2010
  end-page: 2915
  ident: bib34
  article-title: A weighted algorithm based on the homotopy analysis method: application to inverse heat conduction problems
  publication-title: Commun Nonlinear Sci Num Simul
– year: 1999
  ident: bib15
  article-title: Fractional differential equations calculus
– year: 2003
  ident: bib27
  article-title: Beyond perturbation: introduction to homotopy analysis method
– volume: 47
  start-page: 275
  year: 2003
  end-page: 280
  ident: bib10
  article-title: Stationary solutions for two nonlinear Black–Scholes type equations
  publication-title: Appl Numer Math
– volume: 17
  start-page: 387
  year: 1998
  end-page: 407
  ident: bib3
  article-title: Lie symmetry analysis of differential equations in finance
  publication-title: Nonlinear Dynam
– volume: 56
  start-page: 799
  year: 2008
  end-page: 812
  ident: bib11
  article-title: On the numerical solution of nonlinear Black–Scholes equations
  publication-title: Comput Math Appl
– volume: 8
  start-page: A 19
  year: 2010
  ident: bib26
  publication-title: Int J Chem Rect Eng
– ident: bib3
  doi: 10.1023/A:1008304132308
– volume: 137
  start-page: 554
  year: 1903
  ident: bib37
  publication-title: CR Acad Sci Paris (Ser.II)
– ident: bib15
– volume: 5
  start-page: 367
  year: 2002
  ident: bib17
  publication-title: Fract Calc Appl Anal
– ident: bib34
  doi: 10.1016/j.cnsns.2009.11.011
– ident: bib36
– ident: bib13
– ident: bib11
  doi: 10.1016/j.camwa.2008.02.005
– ident: bib27
  doi: 10.1201/9780203491164
– ident: bib31
  doi: 10.1016/j.ijheatmasstransfer.2005.01.005
– ident: bib21
  doi: 10.1142/S0217979206033796
– ident: bib32
  doi: 10.1016/S0020-7225(03)00281-7
– ident: bib6
  doi: 10.1016/j.cam.2011.01.018
– ident: bib5
  doi: 10.1016/j.camwa.2008.02.010
– ident: bib30
  doi: 10.1016/0020-7462(94)00054-E
– ident: bib23
  doi: 10.1016/j.advwatres.2009.09.003
– ident: bib8
  doi: 10.1016/j.na.2009.03.026
– ident: bib24
  doi: 10.1088/0253-6102/53/6/02
– volume: 5
  start-page: 33
  issue: 1
  year: 2011
  ident: bib35
  publication-title: Math Sci
– ident: bib33
  doi: 10.1007/s11071-005-7346-z
– ident: bib16
– ident: bib25
  doi: 10.1016/j.mcm.2008.01.005
– ident: bib12
  doi: 10.1080/00949650903074603
– ident: bib20
  doi: 10.1016/S0020-7462(98)00085-7
– ident: bib4
  doi: 10.1016/j.aml.2008.04.002
– ident: bib14
– start-page: 210
  year: 2000
  ident: bib2
  publication-title: Proceeding of the Hanno Rund workshop on the differential equations
– ident: bib18
  doi: 10.1016/S0045-7825(99)00018-3
– ident: bib1
  doi: 10.1086/260062
– ident: bib28
  doi: 10.1016/S0096-3003(02)00790-7
– ident: bib22
  doi: 10.1006/jsvi.1999.2509
– ident: bib29
  doi: 10.1016/j.ijheatmasstransfer.2005.01.005
– ident: bib9
  doi: 10.1016/S0022-247X(02)00434-1
– ident: bib7
  doi: 10.1016/j.mcm.2009.05.019
– ident: bib19
  doi: 10.1016/j.chaos.2005.03.006
– ident: bib10
  doi: 10.1016/S0168-9274(03)00070-9
SSID ssj0001920448
Score 1.8922939
Snippet The aim of present paper is to present a numerical algorithm for time-fractional Black–Scholes equation with boundary condition for a European option problem...
The aim of present paper is to present a numerical algorithm for time-fractional Black-Scholes equation with boundary condition for a European option problem...
SourceID crossref
informaworld
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 177
SubjectTerms 2010
34A08
35A20
Analytical solution
Black-Scholes equation
European option pricing
Fractional derivatives
Homotopy analysis method
Homotopy perturbation method
Mathematics Subject Classification
Title Numerical computation of fractional Black–Scholes equation arising in financial market
URI https://dx.doi.org/10.1016/j.ejbas.2014.10.003
https://www.tandfonline.com/doi/abs/10.1016/j.ejbas.2014.10.003
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 2314-808X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920448
  issn: 2314-808X
  databaseCode: 0YH
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLAA5SHKSx4YQMJQx24eI0JUHVDFAKhMVuLYUquSQtLy-zk_QosEHWBM4pOiu_P5zv78HUJnNOORDGhIYqoZ4UplJAllSPKAm45XClzEXhS-j_r9eDBIHnyf08rDKk0NrR1RhI3VZnKnWXU9x2apEcR4g8viVxaaxVbRWgCFicF0tV96802WJGhD_VGzDf0s-9uK9I26dGHR6W79-3e30abPN_GNc5AmWlHFDmr6GV3hc087fbGLnvszd3ozxtK2erA2wxONdeluP8AXu99HDHXnGKTVuyMKx6aTIayBeFhgXVN44Fd7oXoPPXXvHm97xHddIDLgMSOKUk1pqhKeRipPo1hFqk01GDSLmTT5AQTJDpQlWsu4A8EUckyoIXXOOGRHecr2UaOYFOoA4ZwyFcMcp4alj8FAxjMZMM4MX7nSUQsFteaF9JTkpjPGWNTYs5GwuhNGd-Yl6K6FLr-E3hwjx_LhYW1S4ZMKlywIsNNywWjRAcTU7qBo1-5EsCWSh3-WPEIb5snBZY5RY1rO1Alalx_TYVWeWt_-BHUc_Vc
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gIMEFGA8xnjlwAInC0mRtekQINMSoOAw0TlGbJtKm0cEe_H6cpGVDgh3g2sRS5Ediu_ZnhE5IykLpk8DjRFOPKZV6USADL_OZmXilQEVso3ArjGPe6USPM138pqzSxNDaAUXYu9oYt0lGX06Ls1QPLnlTmMUubG0WXURLDQ66BRpdf2lOsyyRX4cApIQb-pn2tyfpG3bpzKtzu_7_826gtcLjxFdORapoQeWbqFrY9AifFsDTZ1voOZ64_zd9LO2wBys1PNBYD13_A6zYjJ9nwDv7QK3eHVQ4NrMM4RXE3RzrEsQDv9qW6m30dHvTvm56xdwFT_qMU08RoglJVMSSUGVJyFWo6kSDSFNOpfEQ4JpsQGCiteTA9QC8TIgidUYZ-EdZQndQJR_kahfhjFDFwcqJwemjsJGyVPqUUYNYrnRYQ37JeiELUHIzG6MvyuqznrC8E4Z35iPwrobOv4jeHCbH_O1BKVNRuBXOXRAgqPmE4awGiLHNoWg38ETQOZR7f6Y8RivN9kNLtO7i-320alZc8cwBqoyHE3WIluXHuDsaHllF_wSZ1wFU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aRbyo9YH1mYMHBVebTbqPo6ilYll6UKmnsM0m0FK3tQ9_v5PH2grag143GQgzk2QmO_N9CJ2RDguFTwIvIop6TMqOFwci8DKfacYrCS5iGoWbYZJE7XbccjynY1dWqXNoZYEizFmtN_cwU9ez2izZgzNe12WxK1OaRZfRSi0CVwOHrr42Zo8ssV-F_KNAG_pZ9rcb6Rt06dylU9_893K30IaLN_GNdZAyWpL5Niq7HT3G5w52-mIHvSRT-_emj4WhejA2wwOF1ch2P8CIee_zNHRnH6TluwUKx5rJEO5A3M2xKiA88JtpqN5Fz_X7p9uG51gXPOGziHqSEEVIKmOWhjJLw0iGskoUGLQTUaHjAzgka5CWKCUiUHoAMSbkkCqjDKKjLKV7qJQPcrmPcEaojGCPE43SR2EiZR3hU0Y1XrlUYQX5hea5cJDkmhmjz4vasx43uuNad_oj6K6CLr-EhhaRY_H0oDApd0GFDRY42GmxYDjvAHxiXlCUpTvhdIHkwZ8lT9Fa667Omw_J4yFa1wO2cuYIlSajqTxGq-Jj0h2PToybfwKVZwAD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+computation+of+fractional+Black%E2%80%93Scholes+equation+arising+in+financial+market&rft.jtitle=Egyptian+Journal+of+Basic+and+Applied+Sciences&rft.au=Kumar%2C+Sunil&rft.au=Kumar%2C+Devendra&rft.au=Singh%2C+Jagdev&rft.date=2014-12-01&rft.pub=Elsevier+B.V&rft.issn=2314-808X&rft.eissn=2314-808X&rft.volume=1&rft.issue=3-4&rft.spage=177&rft.epage=183&rft_id=info:doi/10.1016%2Fj.ejbas.2014.10.003&rft.externalDocID=S2314808X14000438
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2314-808X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2314-808X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2314-808X&client=summon