Analysis of implicit HHT-α integration algorithm for real-time hybrid simulation

SUMMARY Real‐time hybrid simulation is a viable experiment technique to evaluate the performance of structures equipped with rate‐dependent seismic devices when subject to dynamic loading. The integration algorithm used to solve the equations of motion has to be stable and accurate to achieve a succ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Earthquake engineering & structural dynamics Ročník 41; číslo 5; s. 1021 - 1041
Hlavní autoři: Chen, Cheng, Ricles, James M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester, UK John Wiley & Sons, Ltd 25.04.2012
Wiley
Témata:
ISSN:0098-8847, 1096-9845
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract SUMMARY Real‐time hybrid simulation is a viable experiment technique to evaluate the performance of structures equipped with rate‐dependent seismic devices when subject to dynamic loading. The integration algorithm used to solve the equations of motion has to be stable and accurate to achieve a successful real‐time hybrid simulation. The implicit HHT α‐algorithm is a popular integration algorithm for conducting structural dynamic time history analysis because of its desirable properties of unconditional stability for linear elastic structures and controllable numerical damping for high frequencies. The implicit form of the algorithm, however, requires iterations for nonlinear structures, which is undesirable for real‐time hybrid simulation. Consequently, the HHT α‐algorithm has been implemented for real‐time hybrid simulation using a fixed number of substep iterations. The resulting HHT α‐algorithm with a fixed number of substep iterations is believed to be unconditionally stable for linear elastic structures, but research on its stability and accuracy for nonlinear structures is quite limited. In this paper, a discrete transfer function approach is utilized to analyze the HHT α‐algorithm with a fixed number of substep iterations. The algorithm is shown to be unconditionally stable for linear elastic structures, but only conditionally stable for nonlinear softening or hardening structures. The equivalent damping of the algorithm is shown to be almost the same as that of the original HHT α‐algorithm, while the period elongation varies depending on the structural nonlinearity and the size of the integration time‐step. A modified form of the algorithm is proposed to improve its stability for use in nonlinear structures. The stability of the modified algorithm is demonstrated to be enhanced and have an accuracy that is comparable to that of the existing HHT α‐algorithm with a fixed number of substep iterations. Both numerical and real‐time hybrid simulations are conducted to verify the modified algorithm. The experimental results demonstrate the effectiveness of the modified algorithm for real‐time testing. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList SUMMARY Real‐time hybrid simulation is a viable experiment technique to evaluate the performance of structures equipped with rate‐dependent seismic devices when subject to dynamic loading. The integration algorithm used to solve the equations of motion has to be stable and accurate to achieve a successful real‐time hybrid simulation. The implicit HHT α‐algorithm is a popular integration algorithm for conducting structural dynamic time history analysis because of its desirable properties of unconditional stability for linear elastic structures and controllable numerical damping for high frequencies. The implicit form of the algorithm, however, requires iterations for nonlinear structures, which is undesirable for real‐time hybrid simulation. Consequently, the HHT α‐algorithm has been implemented for real‐time hybrid simulation using a fixed number of substep iterations. The resulting HHT α‐algorithm with a fixed number of substep iterations is believed to be unconditionally stable for linear elastic structures, but research on its stability and accuracy for nonlinear structures is quite limited. In this paper, a discrete transfer function approach is utilized to analyze the HHT α‐algorithm with a fixed number of substep iterations. The algorithm is shown to be unconditionally stable for linear elastic structures, but only conditionally stable for nonlinear softening or hardening structures. The equivalent damping of the algorithm is shown to be almost the same as that of the original HHT α‐algorithm, while the period elongation varies depending on the structural nonlinearity and the size of the integration time‐step. A modified form of the algorithm is proposed to improve its stability for use in nonlinear structures. The stability of the modified algorithm is demonstrated to be enhanced and have an accuracy that is comparable to that of the existing HHT α‐algorithm with a fixed number of substep iterations. Both numerical and real‐time hybrid simulations are conducted to verify the modified algorithm. The experimental results demonstrate the effectiveness of the modified algorithm for real‐time testing. Copyright © 2011 John Wiley & Sons, Ltd.
Real‐time hybrid simulation is a viable experiment technique to evaluate the performance of structures equipped with rate‐dependent seismic devices when subject to dynamic loading. The integration algorithm used to solve the equations of motion has to be stable and accurate to achieve a successful real‐time hybrid simulation. The implicit HHT α‐algorithm is a popular integration algorithm for conducting structural dynamic time history analysis because of its desirable properties of unconditional stability for linear elastic structures and controllable numerical damping for high frequencies. The implicit form of the algorithm, however, requires iterations for nonlinear structures, which is undesirable for real‐time hybrid simulation. Consequently, the HHT α‐algorithm has been implemented for real‐time hybrid simulation using a fixed number of substep iterations. The resulting HHT α‐algorithm with a fixed number of substep iterations is believed to be unconditionally stable for linear elastic structures, but research on its stability and accuracy for nonlinear structures is quite limited. In this paper, a discrete transfer function approach is utilized to analyze the HHT α‐algorithm with a fixed number of substep iterations. The algorithm is shown to be unconditionally stable for linear elastic structures, but only conditionally stable for nonlinear softening or hardening structures. The equivalent damping of the algorithm is shown to be almost the same as that of the original HHT α‐algorithm, while the period elongation varies depending on the structural nonlinearity and the size of the integration time‐step. A modified form of the algorithm is proposed to improve its stability for use in nonlinear structures. The stability of the modified algorithm is demonstrated to be enhanced and have an accuracy that is comparable to that of the existing HHT α‐algorithm with a fixed number of substep iterations. Both numerical and real‐time hybrid simulations are conducted to verify the modified algorithm. The experimental results demonstrate the effectiveness of the modified algorithm for real‐time testing. Copyright © 2011 John Wiley & Sons, Ltd.
Author Ricles, James M.
Chen, Cheng
Author_xml – sequence: 1
  givenname: Cheng
  surname: Chen
  fullname: Chen, Cheng
  email: Cheng Chen, School of Engineering, San Francisco State University, San Francisco, CA 94132, USA., chcsfsu@sfsu.edu
  organization: School of Engineering, San Francisco State University, CA, 94132, San Francisco, USA
– sequence: 2
  givenname: James M.
  surname: Ricles
  fullname: Ricles, James M.
  organization: ATLSS Research Center, Department of Civil and Environmental Engineering, Lehigh University, 18015, Bethlehem, PAUSA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25655208$$DView record in Pascal Francis
BookMark eNp10M1KxDAUBeAgCo4_4CNkI7jpeNMmbbochnFGEP_FZUjTxImm7ZhUtI_li_hMdmZEUHR1N985cM8O2qybWiN0QGBIAOJj_ayHhGTxBhoQyNMo55RtogFAziPOabaNdkJ4BIAkhWyArka1dF2wATcG22rhrLItns1uo493bOtWP3jZ2qbG0j003rbzCpvGY6-li1pbaTzvCm9LHGz14lZyD20Z6YLe_7q76O5kcjueRWcX09Px6CxSMeVxVCTSMFaC0UQVKcgyLnWpSMGYygk1RUKhNEoWICkwIhNDKUsLk3GaJgziLNlFh-vehQxKOuNlrWwQC28r6TsRs5SxGHjvjtZO-SYEr803ISCWk4l-MrGcrKfDX7QfY_VU66V1fwWideDVOt39WywmV5Of3oZWv3176Z9EmiUZE_fnU5GS6zHnlzcCkk_LUo61
CODEN IJEEBG
CitedBy_id crossref_primary_10_1002_eqe_3039
crossref_primary_10_1002_stc_2018
crossref_primary_10_1002_eqe_4107
crossref_primary_10_1007_s40799_016_0047_3
crossref_primary_10_1002_stc_2771
crossref_primary_10_1007_s40996_023_01235_2
crossref_primary_10_1002_eer2_25
crossref_primary_10_3390_sym13050840
crossref_primary_10_1007_s11803_018_0427_z
crossref_primary_10_1002_stc_2124
crossref_primary_10_1016_j_renene_2016_09_019
crossref_primary_10_1016_j_soildyn_2022_107681
crossref_primary_10_1007_s40799_016_0151_4
crossref_primary_10_1007_s10518_019_00720_2
crossref_primary_10_3390_app10114037
crossref_primary_10_1080_13632469_2024_2333822
crossref_primary_10_1007_s11803_018_0465_6
crossref_primary_10_1080_13632469_2015_1027018
Cites_doi 10.1002/eqe.674
10.1002/eqe.451
10.1016/S0267-7261(97)00017-1
10.1061/(ASCE)0733-9445(1999)125:6(578)
10.1061/(ASCE)EM.1943-7889.0000083
10.1002/eqe.775
10.1098/rsta.2001.0877
10.1002/eqe.628
10.1002/eqe.4290210106
10.1061/(ASCE)0733-9399(2008)134:9(703)
10.1002/nme.135
10.1115/1.3153594
10.1061/(ASCE)0733-9399(2002)128:9(935)
10.1061/(ASCE)0733-9445(1985)111:7(1482)
10.1002/(SICI)1096-9845(199912)28:12<1541::AID-EQE880>3.0.CO;2-R
10.1061/(ASCE)0733-9399(2008)134:8(676)
10.1061/(ASCE)ST.1943-541X.0000124
10.1002/eqe.4290050306
10.1002/eqe.425
10.1002/(SICI)1096-9845(199904)28:4<393::AID-EQE823>3.0.CO;2-C
10.1002/eqe.838
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DOI 10.1002/eqe.1172
DatabaseName Istex
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-9845
EndPage 1041
ExternalDocumentID 25655208
10_1002_eqe_1172
EQE1172
ark_67375_WNG_61RC88PS_0
Genre article
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AABCJ
AAESR
AAEVG
AAHQN
AAIKC
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
O8X
31~
8WZ
A6W
ABEML
ACKIV
ACSCC
AGHNM
AI.
ALUQN
ARCSS
CKXBT
IQODW
M58
PALCI
RIWAO
RJQFR
SAMSI
VH1
ZY4
ID FETCH-LOGICAL-c2482-b3af55d0fe1cb60ad2dedc1b55c914fb340dfcab0a4051a3f4456bf7846350273
IEDL.DBID DRFUL
ISSN 0098-8847
IngestDate Mon Jul 21 09:13:36 EDT 2025
Sat Nov 29 03:40:46 EST 2025
Tue Nov 18 22:11:22 EST 2025
Tue Nov 11 03:13:48 EST 2025
Tue Nov 11 03:33:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords experimental studies
real-time hybrid simulation
algorithms
integration algorithm
high frequency
simulation
testing
dynamic loading
accuracy
discrete transfer function
transfer functions
earthquake engineering
performances
stability
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2482-b3af55d0fe1cb60ad2dedc1b55c914fb340dfcab0a4051a3f4456bf7846350273
Notes ArticleID:EQE1172
istex:870D170B2F8496AF9B86563FE38DA4BF74CF3B0F
ark:/67375/WNG-61RC88PS-0
PageCount 21
ParticipantIDs pascalfrancis_primary_25655208
crossref_primary_10_1002_eqe_1172
crossref_citationtrail_10_1002_eqe_1172
wiley_primary_10_1002_eqe_1172_EQE1172
istex_primary_ark_67375_WNG_61RC88PS_0
PublicationCentury 2000
PublicationDate 25 April 2012
PublicationDateYYYYMMDD 2012-04-25
PublicationDate_xml – month: 04
  year: 2012
  text: 25 April 2012
  day: 25
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle Earthquake engineering & structural dynamics
PublicationTitleAlternate Earthquake Engng Struct. Dyn
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Chen C, Ricles JM. (2008). Development of direct integration algorithms for structural dynamics using discrete control theory. Journal of Engineering Mechanics 2008; 134(8):676-683.
Zhang YF, Sause R, Ricles JM and Naito CJ. Modified predictor-corrector numerical scheme for real-time pseudo dynamic tests using state-space formulation. Earthquake Engineering and Structural Dynamics 2005; 34:271-288.
Chopra AK Dynamics of Structures: Theory and Applications to Earthquake Engineering, 2nd Edition, 2001, Prentice-Hall: New Jersey
Chen C, Ricles JM. Stability analysis of direct integration algorithms applied to nonlinear structural dynamics. Journal of Engineering Mechanics 2008; 134(9):703-711.
Chen C, Ricles JM. Stability analysis of direct integration algorithms applied to MDOF nonlinear structural dynamics. Journal of Engineering Mechanics 2010; 136(4):432-440.
Wu B, Bao H, Ou J, Tian S. Stability and accuracy of the central difference method for real-time substructure testing. Earthquake Engineering and Structural Dynamics 2005; 34:705-718.
Jung RY, Shing PB, Stauffer E, Thoen B. Performance of a real-time pseudodynamic test system considering nonlinear structural response. EESD 2007, 36(12):1785-1809.
Wen YK. Equivalent linearization for hysteretic systems under random excitation. Journal of Applied Mechanics, Transaction of ASME, 1980; 47:150-154.
Chang SY. Explicit Pseudodynamic Algorithm with Unconditional Stability. Journal of Engineering Mechanics 2002; 128(9):935-947.
Wu B, Wang Q, Shing PB, Ou J. Equivalent force control method for generalized real-time substructure testing with implicit integration. EQ Eng. and Struc. Dynamics 2007; 36(9):1127-1149.
Buonopane SG, White RN. Pseudodynamic testing of masonry infilled reinforced concrete frame. Journal of Structural Engineering (ASCE) 1999; 125(6):578-589.
Nakashima M, Kato H, Takaoka E. Development of real-time pseudodynamic testing. Earthquake Engineering and Structural Dynamics 1992; 21:79-92.
Mahin SA, Shing PB. Pseudodynamic method for seismic testing. Journal of Structural Engineering (ASCE) 1985; 111(7):1482-1503.
Bonnet PA, Lim CN, William MS, Blakeborough A, Neild SA, Stoten DP, Taylor CA. Real-time hybrid experiments with Newmark integration, MCSmd outer-loop control and multi-tasking strategies. Earthquake Engineering and Structural Dynamics 2005; 36(1):119-141.
Chen C and Ricles JM. Stability analysis of SDOF real-time hybrid testing systems with explicit integration algorithms and actuator delay. EQ Eng. and Structural Dynamics 2008; 37(4):597-613.
Ogata K Discrete-Time Control Systems, 2nd Edition, 1995, Prentice-Hall: New Jersey.
Chen C, Ricles JM. Tracking Error Based Servo-Hydraulic Actuator Adaptive Compensation for Real-Time Hybrid Simulation. Journal of Structural Engineering 2010, 136(4):432-440.
Nakashima M, Masaoka N. Real-time on-line test for MDOF systems. Earthquake Engineering and Structural Dynamics 1999; 28:393-420.
Molina FJ, Verzeletti G, Magonette G, Buchet P. and Geradin M. Bidirectional pseudodynamic tet of a full-size three-storey building.Earthquake Eng. and Structural Dynamics 1999; 28:1541-1566.
Bass BJ Christenson R, 2007. System identification of a 200kN Magneto-Rheological fluid damper for structural control in large-scale smart structures; Proceedings, 2007 American Control Conference, New York City, pp. 2690-2695.
Blakeborough A, Williams MS, Darby AP, Williams DM. The development of real-time substructure testing. Philosophical Transactions of the Royal Society of London 2001; 359:1869-1891.
Chen C, Ricles JM, Marullo T, Mercan O. Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm. Earthquake Eng. and Structural Dynamics 2008; 38:23-44.
Mugan A, Hulbert GM. Frequency Domain Analysis of Time Integration Methods for Semidiscrete Finite Element Equations, Part II. Hyperbolic and Parabolic-Hyperbolic Problems. International Journal of Numerical Methods in Engineering 2001; 51:351-376.
Jung RY, Shing PB. Performance evaluation of a real-time pseudodynamic test system. Earthquake Engineering and Structural Dynamics 2006; 25(4):333-355.
Combescure D, Pegon P. α-operator splitting time integration technique for pseudodynamic testing error propagation analysis. Soil Dynamics and Earthquake Engineering 1997; 16:417-443.
Hilber HM, Hughes TJR, Taylor RL. Improved numerical dissipation for time integration algorithms in structural mechanics. Earthquake Eng. and Structural Dynamics 1977; 5:283-292.
Franklin GF, Powell JD, Naeini AE. Feedback Control of Dynamic System, 4th Edition, 2002, Prentice-Hall: New Jersey.
1980; 47
2001
1999; 28
2010; 136
2008; 38
2006; 25
2002; 128
2008; 37
2007
1997; 16
1995
2005
1999; 125
2002
1975; 8
2008; 134
1992; 21
2001; 51
2005; 34
2007; 36
2001; 359
1977; 5
1985; 111
2005; 36
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_20_1
Franklin GF (e_1_2_10_26_1) 2002
Chen C (e_1_2_10_25_1) 2010; 136
e_1_2_10_4_1
Combescure D (e_1_2_10_23_1) 1997; 16
e_1_2_10_3_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
Mugan A (e_1_2_10_29_1) 2001; 51
e_1_2_10_10_1
e_1_2_10_32_1
Jung RY (e_1_2_10_18_1) 2006; 25
e_1_2_10_31_1
Bass BJ (e_1_2_10_30_1) 2007
Takanashi K (e_1_2_10_2_1) 1975
Chopra AK (e_1_2_10_22_1) 2001
Bonnet PA (e_1_2_10_11_1) 2005; 36
Jung RY (e_1_2_10_19_1) 2007; 36
Ogata K (e_1_2_10_27_1) 1995
e_1_2_10_28_1
References_xml – reference: Nakashima M, Kato H, Takaoka E. Development of real-time pseudodynamic testing. Earthquake Engineering and Structural Dynamics 1992; 21:79-92.
– reference: Chen C, Ricles JM. (2008). Development of direct integration algorithms for structural dynamics using discrete control theory. Journal of Engineering Mechanics 2008; 134(8):676-683.
– reference: Wen YK. Equivalent linearization for hysteretic systems under random excitation. Journal of Applied Mechanics, Transaction of ASME, 1980; 47:150-154.
– reference: Combescure D, Pegon P. α-operator splitting time integration technique for pseudodynamic testing error propagation analysis. Soil Dynamics and Earthquake Engineering 1997; 16:417-443.
– reference: Wu B, Wang Q, Shing PB, Ou J. Equivalent force control method for generalized real-time substructure testing with implicit integration. EQ Eng. and Struc. Dynamics 2007; 36(9):1127-1149.
– reference: Mahin SA, Shing PB. Pseudodynamic method for seismic testing. Journal of Structural Engineering (ASCE) 1985; 111(7):1482-1503.
– reference: Chen C, Ricles JM. Tracking Error Based Servo-Hydraulic Actuator Adaptive Compensation for Real-Time Hybrid Simulation. Journal of Structural Engineering 2010, 136(4):432-440.
– reference: Chen C and Ricles JM. Stability analysis of SDOF real-time hybrid testing systems with explicit integration algorithms and actuator delay. EQ Eng. and Structural Dynamics 2008; 37(4):597-613.
– reference: Nakashima M, Masaoka N. Real-time on-line test for MDOF systems. Earthquake Engineering and Structural Dynamics 1999; 28:393-420.
– reference: Chen C, Ricles JM. Stability analysis of direct integration algorithms applied to nonlinear structural dynamics. Journal of Engineering Mechanics 2008; 134(9):703-711.
– reference: Chen C, Ricles JM, Marullo T, Mercan O. Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm. Earthquake Eng. and Structural Dynamics 2008; 38:23-44.
– reference: Mugan A, Hulbert GM. Frequency Domain Analysis of Time Integration Methods for Semidiscrete Finite Element Equations, Part II. Hyperbolic and Parabolic-Hyperbolic Problems. International Journal of Numerical Methods in Engineering 2001; 51:351-376.
– reference: Ogata K Discrete-Time Control Systems, 2nd Edition, 1995, Prentice-Hall: New Jersey.
– reference: Chang SY. Explicit Pseudodynamic Algorithm with Unconditional Stability. Journal of Engineering Mechanics 2002; 128(9):935-947.
– reference: Chen C, Ricles JM. Stability analysis of direct integration algorithms applied to MDOF nonlinear structural dynamics. Journal of Engineering Mechanics 2010; 136(4):432-440.
– reference: Jung RY, Shing PB. Performance evaluation of a real-time pseudodynamic test system. Earthquake Engineering and Structural Dynamics 2006; 25(4):333-355.
– reference: Chopra AK Dynamics of Structures: Theory and Applications to Earthquake Engineering, 2nd Edition, 2001, Prentice-Hall: New Jersey
– reference: Molina FJ, Verzeletti G, Magonette G, Buchet P. and Geradin M. Bidirectional pseudodynamic tet of a full-size three-storey building.Earthquake Eng. and Structural Dynamics 1999; 28:1541-1566.
– reference: Zhang YF, Sause R, Ricles JM and Naito CJ. Modified predictor-corrector numerical scheme for real-time pseudo dynamic tests using state-space formulation. Earthquake Engineering and Structural Dynamics 2005; 34:271-288.
– reference: Bass BJ Christenson R, 2007. System identification of a 200kN Magneto-Rheological fluid damper for structural control in large-scale smart structures; Proceedings, 2007 American Control Conference, New York City, pp. 2690-2695.
– reference: Jung RY, Shing PB, Stauffer E, Thoen B. Performance of a real-time pseudodynamic test system considering nonlinear structural response. EESD 2007, 36(12):1785-1809.
– reference: Hilber HM, Hughes TJR, Taylor RL. Improved numerical dissipation for time integration algorithms in structural mechanics. Earthquake Eng. and Structural Dynamics 1977; 5:283-292.
– reference: Buonopane SG, White RN. Pseudodynamic testing of masonry infilled reinforced concrete frame. Journal of Structural Engineering (ASCE) 1999; 125(6):578-589.
– reference: Wu B, Bao H, Ou J, Tian S. Stability and accuracy of the central difference method for real-time substructure testing. Earthquake Engineering and Structural Dynamics 2005; 34:705-718.
– reference: Blakeborough A, Williams MS, Darby AP, Williams DM. The development of real-time substructure testing. Philosophical Transactions of the Royal Society of London 2001; 359:1869-1891.
– reference: Bonnet PA, Lim CN, William MS, Blakeborough A, Neild SA, Stoten DP, Taylor CA. Real-time hybrid experiments with Newmark integration, MCSmd outer-loop control and multi-tasking strategies. Earthquake Engineering and Structural Dynamics 2005; 36(1):119-141.
– reference: Franklin GF, Powell JD, Naeini AE. Feedback Control of Dynamic System, 4th Edition, 2002, Prentice-Hall: New Jersey.
– volume: 8
  year: 1975
– volume: 34
  start-page: 705
  year: 2005
  end-page: 718
  article-title: Stability and accuracy of the central difference method for real‐time substructure testing
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 36
  start-page: 1127
  issue: 9
  year: 2007
  end-page: 1149
  article-title: Equivalent force control method for generalized real‐time substructure testing with implicit integration
  publication-title: EQ Eng. and Struc. Dynamics
– volume: 5
  start-page: 283
  year: 1977
  end-page: 292
  article-title: Improved numerical dissipation for time integration algorithms in structural mechanics
  publication-title: Earthquake Eng. and Structural Dynamics
– year: 2005
– year: 2007
– year: 2001
– volume: 36
  start-page: 119
  issue: 1
  year: 2005
  end-page: 141
  article-title: Real‐time hybrid experiments with Newmark integration, MCSmd outer‐loop control and multi‐tasking strategies
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 136
  start-page: 432
  issue: 4
  year: 2010
  end-page: 440
  article-title: Stability analysis of direct integration algorithms applied to MDOF nonlinear structural dynamics
  publication-title: Journal of Engineering Mechanics
– volume: 28
  start-page: 393
  year: 1999
  end-page: 420
  article-title: Real‐time on‐line test for MDOF systems
  publication-title: Earthquake Engineering and Structural Dynamics
– start-page: 2690
  year: 2007
  end-page: 2695
– volume: 134
  start-page: 703
  issue: 9
  year: 2008
  end-page: 711
  article-title: Stability analysis of direct integration algorithms applied to nonlinear structural dynamics
  publication-title: Journal of Engineering Mechanics
– volume: 125
  start-page: 578
  issue: 6
  year: 1999
  end-page: 589
  article-title: Pseudodynamic testing of masonry infilled reinforced concrete frame
  publication-title: Journal of Structural Engineering (ASCE)
– volume: 136
  start-page: 432
  issue: 4
  year: 2010
  end-page: 440
  article-title: Tracking Error Based Servo‐Hydraulic Actuator Adaptive Compensation for Real‐Time Hybrid Simulation
  publication-title: Journal of Structural Engineering
– volume: 28
  start-page: 1541
  year: 1999
  end-page: 1566
  article-title: Bidirectional pseudodynamic tet of a full‐size three‐storey building
  publication-title: Earthquake Eng. and Structural Dynamics
– volume: 25
  start-page: 333
  issue: 4
  year: 2006
  end-page: 355
  article-title: Performance evaluati n of a real‐time pseudodynamic test system
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 134
  start-page: 676
  issue: 8
  year: 2008
  end-page: 683
  article-title: Development of direct integration algorithms for structural dynamics using discrete control theory
  publication-title: Journal of Engineering Mechanics
– volume: 16
  start-page: 417
  year: 1997
  end-page: 443
  article-title: α‐operator splitting time integration technique for pseudodynamic testing error propagation analysis
  publication-title: Soil Dynamics and Earthquake Engineering
– volume: 51
  start-page: 351
  year: 2001
  end-page: 376
  article-title: Frequency Domain Analysis of Time Integration Methods for Semidiscrete Finite Element Equations, Part II. Hyperbolic and Parabolic‐Hyperbolic Problems
  publication-title: International Journal of Numerical Methods in Engineering
– volume: 21
  start-page: 79
  year: 1992
  end-page: 92
  article-title: Development of real‐time pseudodynamic testing
  publication-title: Earthquake Engineering and Structural Dynamics
– year: 2002
– volume: 36
  start-page: 1785
  issue: 12
  year: 2007
  end-page: 1809
  article-title: Performance of a real‐time pseudodynamic test system considering nonlinear structural response
  publication-title: EESD
– volume: 38
  start-page: 23
  year: 2008
  end-page: 44
  article-title: Real‐time hybrid testing using the unconditionally stable explicit CR integration algorithm
  publication-title: Earthquake Eng. and Structural Dynamics
– year: 1995
– volume: 111
  start-page: 1482
  issue: 7
  year: 1985
  end-page: 1503
  article-title: Pseudodynamic method for seismic testing
  publication-title: Journal of Structural Engineering (ASCE)
– volume: 359
  start-page: 1869
  year: 2001
  end-page: 1891
  article-title: The development of real‐time substructure testing
  publication-title: Philosophical Transactions of the Royal Society of London
– volume: 47
  start-page: 150
  year: 1980
  end-page: 154
  article-title: Equivalent linearization for hysteretic systems under random excitation
  publication-title: Journal of Applied Mechanics, Transaction of ASME
– volume: 128
  start-page: 935
  issue: 9
  year: 2002
  end-page: 947
  article-title: Explicit Pseudodynamic Algorithm with Unconditional Stability
  publication-title: Journal of Engineering Mechanics
– volume: 37
  start-page: 597
  issue: 4
  year: 2008
  end-page: 613
  article-title: Stability analysis of SDOF real‐time hybrid testing systems with explicit integration algorithms and actuator delay
  publication-title: EQ Eng. and Structural Dynamics
– volume: 34
  start-page: 271
  year: 2005
  end-page: 288
  article-title: Modified predictor‐corrector numerical scheme for real‐time pseudo dynamic tests using state‐space formulation
  publication-title: Earthquake Engineering and Structural Dynamics
– ident: e_1_2_10_16_1
  doi: 10.1002/eqe.674
– ident: e_1_2_10_9_1
  doi: 10.1002/eqe.451
– volume: 16
  start-page: 417
  year: 1997
  ident: e_1_2_10_23_1
  article-title: α‐operator splitting time integration technique for pseudodynamic testing error propagation analysis
  publication-title: Soil Dynamics and Earthquake Engineering
  doi: 10.1016/S0267-7261(97)00017-1
– ident: e_1_2_10_4_1
  doi: 10.1061/(ASCE)0733-9445(1999)125:6(578)
– volume: 136
  start-page: 432
  issue: 4
  year: 2010
  ident: e_1_2_10_25_1
  article-title: Stability analysis of direct integration algorithms applied to MDOF nonlinear structural dynamics
  publication-title: Journal of Engineering Mechanics
  doi: 10.1061/(ASCE)EM.1943-7889.0000083
– ident: e_1_2_10_32_1
– ident: e_1_2_10_28_1
  doi: 10.1002/eqe.775
– ident: e_1_2_10_8_1
  doi: 10.1098/rsta.2001.0877
– volume: 36
  start-page: 119
  issue: 1
  year: 2005
  ident: e_1_2_10_11_1
  article-title: Real‐time hybrid experiments with Newmark integration, MCSmd outer‐loop control and multi‐tasking strategies
  publication-title: Earthquake Engineering and Structural Dynamics
  doi: 10.1002/eqe.628
– ident: e_1_2_10_6_1
  doi: 10.1002/eqe.4290210106
– ident: e_1_2_10_24_1
  doi: 10.1061/(ASCE)0733-9399(2008)134:9(703)
– volume: 51
  start-page: 351
  year: 2001
  ident: e_1_2_10_29_1
  article-title: Frequency Domain Analysis of Time Integration Methods for Semidiscrete Finite Element Equations, Part II. Hyperbolic and Parabolic‐Hyperbolic Problems
  publication-title: International Journal of Numerical Methods in Engineering
  doi: 10.1002/nme.135
– start-page: 2690
  volume-title: System identification of a 200kN Magneto‐Rheological fluid damper for structural control in large‐scale smart structures
  year: 2007
  ident: e_1_2_10_30_1
– ident: e_1_2_10_31_1
  doi: 10.1115/1.3153594
– ident: e_1_2_10_20_1
– volume-title: Feedback Control of Dynamic System
  year: 2002
  ident: e_1_2_10_26_1
– ident: e_1_2_10_12_1
  doi: 10.1061/(ASCE)0733-9399(2002)128:9(935)
– volume-title: Bulletin of Earthquake Resistant Structure Research Center
  year: 1975
  ident: e_1_2_10_2_1
– volume: 36
  start-page: 1785
  issue: 12
  year: 2007
  ident: e_1_2_10_19_1
  article-title: Performance of a real‐time pseudodynamic test system considering nonlinear structural response
  publication-title: EESD
– ident: e_1_2_10_3_1
  doi: 10.1061/(ASCE)0733-9445(1985)111:7(1482)
– ident: e_1_2_10_5_1
  doi: 10.1002/(SICI)1096-9845(199912)28:12<1541::AID-EQE880>3.0.CO;2-R
– volume-title: Discrete‐Time Control Systems
  year: 1995
  ident: e_1_2_10_27_1
– ident: e_1_2_10_13_1
  doi: 10.1061/(ASCE)0733-9399(2008)134:8(676)
– ident: e_1_2_10_17_1
– ident: e_1_2_10_15_1
  doi: 10.1061/(ASCE)ST.1943-541X.0000124
– ident: e_1_2_10_21_1
  doi: 10.1002/eqe.4290050306
– ident: e_1_2_10_10_1
  doi: 10.1002/eqe.425
– ident: e_1_2_10_7_1
  doi: 10.1002/(SICI)1096-9845(199904)28:4<393::AID-EQE823>3.0.CO;2-C
– ident: e_1_2_10_14_1
  doi: 10.1002/eqe.838
– volume: 25
  start-page: 333
  issue: 4
  year: 2006
  ident: e_1_2_10_18_1
  article-title: Performance evaluation of a real‐time pseudodynamic test system
  publication-title: Earthquake Engineering and Structural Dynamics
– volume-title: Dynamics of Structures: Theory and Applications to Earthquake Engineering
  year: 2001
  ident: e_1_2_10_22_1
SSID ssj0003607
Score 2.108085
Snippet SUMMARY Real‐time hybrid simulation is a viable experiment technique to evaluate the performance of structures equipped with rate‐dependent seismic devices...
Real‐time hybrid simulation is a viable experiment technique to evaluate the performance of structures equipped with rate‐dependent seismic devices when...
SourceID pascalfrancis
crossref
wiley
istex
SourceType Index Database
Enrichment Source
Publisher
StartPage 1021
SubjectTerms accuracy
discrete transfer function
Earth sciences
Earth, ocean, space
Earthquakes, seismology
Engineering and environment geology. Geothermics
Engineering geology
Exact sciences and technology
integration algorithm
Internal geophysics
real-time hybrid simulation
stability
Title Analysis of implicit HHT-α integration algorithm for real-time hybrid simulation
URI https://api.istex.fr/ark:/67375/WNG-61RC88PS-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.1172
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1096-9845
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003607
  issn: 0098-8847
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwELZQy2H3wN-CKD-VkdDuKcJx4iY-ImjpAVVQqJZbZDs2jSgttAXBjUfgVXgRHoInYZw_qMRKSHvKZexEM-Pxp3j8fQjtGj-Ipebc0aFPHd94HOogNw7s5kYKZWgYk1RsIuh0wosLfpJ3Vdq7MBk_RPnDza6MtF7bBS7kZO-DNFTfanviCOW3SiFtWQVVD7ut3nFZh70GKRkzQyjCBfUsoXvF2JnNqGr9-mCbI8UE_GMyYYtZ0JruOq3F__neJbSQY028nyXHMprTwxX08xMD4S_UK0hJ8MjgJO0uT6a43T5_e3p-fcEFmQQED4vB5WicTPvXGHAuBqw5ABsrTY_7j_baF54k17kW2CrqtZrnB20nV1pwFPUBYktPGMZiYrSrZIOImMY6Vq5kTHHXN9LzSWyUkEQAvnOFZ3zAXdIEAF48Zhlx1lBlOBrqdYQt35cRMpAwo6-o4IZRHQKOCxjnQuoa-lO4PFI5DblVwxhEGYEyjcBRloKc1tBOaXmTUW98YfM7jVppIMZXtlUtYNHfzlHUcLsHYXhyFpEaqs-EtRwAkI8xSkKYKY3eP18VNU-b9rnxXcNN9APQFbVHT5Rtocp0fKe30by6nyaTcT3P1neefvFE
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB5VDRL0QPmrGqDFSIieVvV67exaPaGSEESISpuI3la2125XpAkkAZUbj9BX4UV4CJ6k4_2DSCAhcdrL2F7NjGc-2eNvAJ45HmfaShnYhLOAu0hiHJQuwGzutDKOJRktmk3Ew2FyeiqP1uCgfgtT8kM0B25-ZxTx2m9wfyC9_4s11H6y_soR42-Loxehe7deHvfGgyYQRx3aUGYmGIVr7lnK9uuxK9mo5RV76asj1QIV5MrOFquotUg7vc3_-uE7cLtCm-RF6R53Yc1O78HGbxyE92Fc05KQmSN5UV-eL0m_P_r57erHd1LTSaD5iJqczeb58vyCINIliDYnKOOb05Pzr_7hF1nkF1U3sAcw7nVHh_2g6rUQGMYRZOtIOSEy6mxodIeqjGU2M6EWwsiQOx1xmjmjNFWI8EIVOY7IS7sY4UskPCfOFqxPZ1O7DcQzfjmlY40zcsOUdILZBJFcLKRU2rZhr9Z5aioict8PY5KWFMosRUV5EnLWhqeN5MeSfOMPMs8LszUCav7BF6vFIn0_fJV2wuPDJDk6SWkbdlfs2gxA0CcEownOVJjvr0ul3Xdd_334r4JP4GZ_9HaQDl4P3zyCW4i1mL-IYuIxrC_nn-0O3DBflvlivlu57jUDvPU0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB5VCUJwoBSoCJRipApOq3q9dnYtTlWbENQqSksjelvZXpuuSJOSBAQ3HqGv0hfpQ_AkjPcPIoGExGkvY-9qxp75tB5_H8CO43GmrZSBTTgLuIsk5kHpAqzmTivjWJLRQmwiHg6TszM5WoPX9V2Ykh-i-eHmd0aRr_0Gt5eZ2_3FGmo_WX_kiPm3zb2GTAvaByf98VGTiKMubSgzE8zCNfcsZbv12JVq1PaO_eq7I9UCHeRKZYtV1FqUnf76f33wfbhXoU2yVy6PDViz0wdw9zcOwocwrmlJyMyRvOgvz5dkMDj98f3q5prUdBIYPqImH2bzfHl-QRDpEkSbE7Tx4vTk_Ju_-EUW-UWlBvYIxv3e6f4gqLQWAsM4gmwdKSdERp0Nje5SlbHMZibUQhgZcqcjTjNnlKYKEV6oIscReWkXI3yJhOfE2YTWdDa1j4F4xi-ndKxxRm6Ykk4wmyCSi4WUStsOvKp9npqKiNzrYUzSkkKZpegoT0LOOvCisbwsyTf-YPOyCFtjoOYffbNaLNL3wzdpNzzZT5LRu5R2YHslrs0ABH1CMJrgTEX4_vqqtHfc888n_2r4HG6PDvrp0dvh4VO4g1CL-XMoJragtZx_ts_glvmyzBfz7Wrl_gShV_Sv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+implicit+HHT-%CE%B1+integration+algorithm+for+real-time+hybrid+simulation&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=CHENG+CHEN&rft.au=RICLES%2C+James+M&rft.date=2012-04-25&rft.pub=Wiley&rft.issn=0098-8847&rft.volume=41&rft.issue=5&rft.spage=1021&rft.epage=1041&rft_id=info:doi/10.1002%2Feqe.1172&rft.externalDBID=n%2Fa&rft.externalDocID=25655208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon