Design of Data Driven Automated Driving Control Algorithm for Enhanced Human Acceptance
This article presents a data-driven automated driving control algorithm designed to enhance human acceptance in autonomous vehicles. To achieve this, we utilize an LSTM autoencoder to extract latent driving features from collected data, which are then clustered into lateral and longitudinal behavior...
Saved in:
| Published in: | IEEE transactions on consumer electronics Vol. 71; no. 3; pp. 7848 - 7863 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0098-3063, 1558-4127 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This article presents a data-driven automated driving control algorithm designed to enhance human acceptance in autonomous vehicles. To achieve this, we utilize an LSTM autoencoder to extract latent driving features from collected data, which are then clustered into lateral and longitudinal behaviors. These clustered behaviors serve as the foundation for generating steering and acceleration profiles, enabling the automated driving system to replicate individualized human driving styles. By incorporating three distinct driving behaviors, the proposed approach effectively mitigates potential sources of discomfort, such as excessive jerk and abrupt accelerations, ensuring a smoother ride experience. Additionally, we introduce a comprehensive ride quality evaluation metric that considers both trajectory similarity (trajectory score) and passenger comfort (comfort energy expression). The effectiveness of the proposed algorithm is validated through real-world vehicle tests, focusing on driving scenarios known to cause ride discomfort. Experimental results demonstrate that the automated driving control framework successfully enhances ride quality while adapting to individual passenger driving preferences, thus improving overall human acceptance of autonomous vehicles. |
|---|---|
| AbstractList | This article presents a data-driven automated driving control algorithm designed to enhance human acceptance in autonomous vehicles. To achieve this, we utilize an LSTM autoencoder to extract latent driving features from collected data, which are then clustered into lateral and longitudinal behaviors. These clustered behaviors serve as the foundation for generating steering and acceleration profiles, enabling the automated driving system to replicate individualized human driving styles. By incorporating three distinct driving behaviors, the proposed approach effectively mitigates potential sources of discomfort, such as excessive jerk and abrupt accelerations, ensuring a smoother ride experience. Additionally, we introduce a comprehensive ride quality evaluation metric that considers both trajectory similarity (trajectory score) and passenger comfort (comfort energy expression). The effectiveness of the proposed algorithm is validated through real-world vehicle tests, focusing on driving scenarios known to cause ride discomfort. Experimental results demonstrate that the automated driving control framework successfully enhances ride quality while adapting to individual passenger driving preferences, thus improving overall human acceptance of autonomous vehicles. |
| Author | Han, YongHa Shin, Donghoon Park, Kang-Moon |
| Author_xml | – sequence: 1 givenname: Donghoon orcidid: 0000-0002-6280-7550 surname: Shin fullname: Shin, Donghoon email: dhshin@kmou.ac.kr organization: Division of Artificial Intelligence Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea – sequence: 2 givenname: YongHa orcidid: 0009-0004-2434-6310 surname: Han fullname: Han, YongHa email: yongha@hyundai.com organization: Virtual Technology Innovation Research Laboratory, Hyundai Motor Company, Gyeonggi, Republic of Korea – sequence: 3 givenname: Kang-Moon orcidid: 0000-0003-2452-9438 surname: Park fullname: Park, Kang-Moon email: kmpark@ut.ac.kr organization: Department of Electronic Engineering, Korea National University of Transportation, Chungju, Republic of Korea |
| BookMark | eNpFkE1LAzEURYMo2Fb3LlwEXE_N5yRZlrZaoeCm4jJkkkw7pZPUTEbw3zu1BVcPLufeB2cMrkMMHoAHjKYYI_W8mS-nBBE-pVwJosQVGGHOZcEwEddghJCSBUUlvQXjrtsjhBkncgQ-F75rtgHGGi5MNnCRmm8f4KzPsTXZu7-gCVs4jyGneICzwzamJu9aWMcEl2Fngh2wVd-aoWatP-ZTcgduanPo_P3lTsDHy3IzXxXr99e3-WxdWMJELhxjdeUqSiXhlijHuPOWM45U5ZwwUnlelY4OEK6pKT1zgotSKosJErZydAKezrvHFL9632W9j30Kw0tNicC4lEiKgUJnyqbYdcnX-pia1qQfjZE-6dODPn3Spy_6hsrjudJ47_9xjAmWitNfUKxtOw |
| CODEN | ITCEDA |
| Cites_doi | 10.4271/2020-01-0737 10.1007/978-981-13-7139-4_27 10.3390/s23125551 10.1145/3450267.3450542 10.1109/TITS.2018.2823744 10.1177/1687814020974532 10.1109/TITS.2024.3432755 10.1016/j.ijinfomgt.2020.102282 10.1109/JSEN.2022.3230361 10.1109/TCYB.2019.2945999 10.1007/s11222-007-9033-z 10.1111/mice.12787 10.1007/s10618-021-00796-y 10.3390/math11020474 10.4271/2019-26-0098 10.1109/OJVT.2023.3335180 10.34133/research.0402 10.1109/TVT.2020.2996681 10.1109/MITS.2019.2953533 10.1109/tce.2024.3514658 10.1109/MNET.018.2300125 10.1007/978-3-319-26054-9 10.1109/ACCESS.2022.3156275 10.1109/ACCESS.2020.2983149 10.70470/shifra/2023/005 10.1109/TITS.2024.3409874 10.1109/TVT.2022.3142246 10.1016/j.conengprac.2016.03.016 10.1111/mice.12934 10.1007/978-3-319-42408-8_14 10.1109/TCE.2024.3357985 10.1007/s12239-021-0080-9 10.1109/TVT.2020.2980197 10.3390/app13020946 10.1007/978-981-19-0619-0_34 10.1109/TCE.2023.3245334 10.1109/TVT.2021.3131751 10.1109/ACCESS.2025.3529883 10.1109/ACCESS.2024.3380369 10.1007/s11665-024-09501-8 10.1126/science.aaf2654 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD F28 FR3 L7M |
| DOI | 10.1109/TCE.2025.3597297 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) Online IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts |
| DatabaseTitleList | Engineering Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-4127 |
| EndPage | 7863 |
| ExternalDocumentID | 10_1109_TCE_2025_3597297 11121895 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Korea Institute of Energy Technology Evaluation and Planning through the Korea government grantid: RS-2025-02308939 funderid: 10.13039/501100007053 – fundername: Hyundai Motor Company |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SP 8FD F28 FR3 L7M |
| ID | FETCH-LOGICAL-c247t-d44fbdb33825c29d45dec54509bdd7a89e5b6d34fb1f3a6e4d757689c1207cbd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001616650700045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-3063 |
| IngestDate | Thu Nov 27 15:42:16 EST 2025 Sat Nov 29 06:50:35 EST 2025 Wed Nov 19 08:27:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-d44fbdb33825c29d45dec54509bdd7a89e5b6d34fb1f3a6e4d757689c1207cbd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6280-7550 0009-0004-2434-6310 0000-0003-2452-9438 |
| PQID | 3271168087 |
| PQPubID | 85469 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3271168087 ieee_primary_11121895 crossref_primary_10_1109_TCE_2025_3597297 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on consumer electronics |
| PublicationTitleAbbrev | T-CE |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref58 ref53 ref55 Navarro (ref52) 2020 ref54 Behrisch (ref59) Song (ref4) 2024; 25 Myoung (ref36) ref16 ref19 ref18 Homayouni (ref41) ref50 ref46 Chougule (ref13) 2024; 5 Son (ref34) ref42 ref44 Chen (ref5) 2024; 25 ref8 ref7 Yakub (ref23) ref3 Stoica (ref47) 2023 ref40 Rong (ref57) ref35 ref37 ref31 (ref48) 2024 Zhang (ref9) 2024; 70 ref30 ref33 Liu (ref10) ref32 ref2 ref1 ref39 Rastgoftar (ref14) Liu (ref17) ref24 (ref49) 2025 ref25 ref20 Bapat (ref51) 2019 ref22 ref21 Morales (ref38) Deng (ref6) 2023 Shaham (ref43) 2018 Shin (ref26) 2025; 13 ref28 ref27 ref29 (ref11) 2025 Dosovitskiy (ref56) Ng (ref45) |
| References_xml | – volume-title: Using Reinforcement Learning and Simulation to Develop Autonomous Vehicle Control Strategies year: 2020 ident: ref52 doi: 10.4271/2020-01-0737 – start-page: 66 volume-title: Proc. IEEE Int. Conf. Autom. Control Intell. Syst. (I2CACIS) ident: ref23 article-title: Enhancing vehicle ride comfort through intelligent based control – ident: ref1 doi: 10.1007/978-981-13-7139-4_27 – ident: ref28 doi: 10.3390/s23125551 – start-page: 622 volume-title: Proc. IEEE Int. Conf. Softw. Anal., Evol. Reeng. (SANER) ident: ref10 article-title: An analysis of testing scenarios for automated driving systems – ident: ref24 doi: 10.1145/3450267.3450542 – start-page: 2737 volume-title: Proc. IEEE/RSJ Int. Conf. Intell. Robots Sys. ident: ref38 article-title: Human-comfortable navigation for an autonomous robotic wheelchair – ident: ref54 doi: 10.1109/TITS.2018.2823744 – ident: ref8 doi: 10.1177/1687814020974532 – volume: 25 start-page: 17733 issue: 11 year: 2024 ident: ref5 article-title: Joint scene flow estimation and moving object segmentation on rotational LiDAR data publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2024.3432755 – ident: ref31 doi: 10.1016/j.ijinfomgt.2020.102282 – start-page: 5068 volume-title: Proc. IEEE Int. Conf. Big Data (Big Data) ident: ref41 article-title: An autocorrelation-based LSTM-autoencoder for anomaly detection on time-series data – year: 2018 ident: ref43 article-title: SpectralNet: Spectral clustering using deep neural networks publication-title: arXiv:1801.01587 – ident: ref29 doi: 10.1109/JSEN.2022.3230361 – ident: ref42 doi: 10.1109/TCYB.2019.2945999 – ident: ref46 doi: 10.1007/s11222-007-9033-z – ident: ref32 doi: 10.1111/mice.12787 – start-page: 526 volume-title: Proc. KSAE ident: ref36 article-title: Human driving behavior categorization using spectral clustering for highly automated driving in urban traffic situation – start-page: 1 volume-title: Proc. 1st Annu. Conf. Robot Learn. ident: ref56 article-title: CARLA: An open urban driving simulator – ident: ref44 doi: 10.1007/s10618-021-00796-y – ident: ref33 doi: 10.3390/math11020474 – volume-title: Development of Autonomous Vehicle Controller year: 2019 ident: ref51 doi: 10.4271/2019-26-0098 – volume: 5 start-page: 142 year: 2024 ident: ref13 article-title: A Comprehensive review on limitations of autonomous driving and its impact on accidents and collisions publication-title: IEEE Open J. Veh. Technol. doi: 10.1109/OJVT.2023.3335180 – start-page: 119 volume-title: Proc. 5th Int. Conf. Intell. Auton. Syst. (ICoIAS) ident: ref17 article-title: Data-driven human-like path planning for autonomous driving based on imitation learning – year: 2023 ident: ref6 article-title: Evaluation and control model design of human factors for autonomous driving systems publication-title: arXiv:2307.00720 – start-page: 576 volume-title: Proc. IEEE Int. Conf. Mechatronics (ICM) ident: ref34 article-title: Simulation-based testing framework for autonomous driving development – ident: ref22 doi: 10.34133/research.0402 – ident: ref39 doi: 10.1109/TVT.2020.2996681 – ident: ref40 doi: 10.1109/MITS.2019.2953533 – ident: ref2 doi: 10.1109/tce.2024.3514658 – ident: ref21 doi: 10.1109/MNET.018.2300125 – start-page: 5876 volume-title: Proc. Annu. Amer. Control Conf. (ACC) ident: ref14 article-title: A data-driven approach for autonomous motion planning and control in off-road driving scenarios – ident: ref27 doi: 10.1007/978-3-319-26054-9 – ident: ref50 doi: 10.1109/ACCESS.2022.3156275 – ident: ref12 doi: 10.1109/ACCESS.2020.2983149 – ident: ref20 doi: 10.70470/shifra/2023/005 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref45 article-title: On spectral clustering: Analysis and an algorithm – volume: 25 start-page: 16687 issue: 11 year: 2024 ident: ref4 article-title: Subjective driving risk prediction based on spatiotemporal distribution features of human driver’s cognitive risk publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2024.3409874 – ident: ref15 doi: 10.1109/TVT.2022.3142246 – ident: ref55 doi: 10.1016/j.conengprac.2016.03.016 – ident: ref7 doi: 10.1111/mice.12934 – ident: ref53 doi: 10.1007/978-3-319-42408-8_14 – volume-title: Siheung city implements autonomous driving mobility service year: 2024 ident: ref48 – ident: ref3 doi: 10.1109/TCE.2024.3357985 – ident: ref35 doi: 10.1007/s12239-021-0080-9 – ident: ref16 doi: 10.1109/TVT.2020.2980197 – volume-title: MicroAutoBox II embedded PC year: 2025 ident: ref49 – year: 2023 ident: ref47 article-title: Pearson-Matthews correlation coefficients for binary and multinary classification and hypothesis testing publication-title: arXiv:2305.05974 – start-page: 1 volume-title: Proc. IEEE 23rd Int. Conf. Intell. Transp. Syst. (ITSC) ident: ref57 article-title: LGSVL simulator: A high fidelity simulator for autonomous driving – ident: ref25 doi: 10.3390/app13020946 – ident: ref30 doi: 10.1007/978-981-19-0619-0_34 – volume-title: Evolution and Reengineering (SANER). IEEE, 2021. What are the Different Levels of Self-Driving Cars? The Car Connection year: 2025 ident: ref11 – volume: 70 start-page: 3384 issue: 1 year: 2024 ident: ref9 article-title: Elastic tracking operation method for high-speed railway using deep reinforcement learning publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2023.3245334 – ident: ref18 doi: 10.1109/TVT.2021.3131751 – volume: 13 start-page: 12832 year: 2025 ident: ref26 article-title: Clustering and investigation of human driving behavior using autoencoder and risk assessment publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3529883 – start-page: 55 volume-title: Proc. 3rd Int. Conf. Adv. Syst. Simul. SIMUL ident: ref59 article-title: SUMO–simulation of urban mobility: An overview – ident: ref58 doi: 10.1109/ACCESS.2024.3380369 – ident: ref19 doi: 10.1007/s11665-024-09501-8 – ident: ref37 doi: 10.1126/science.aaf2654 |
| SSID | ssj0014528 |
| Score | 2.44119 |
| Snippet | This article presents a data-driven automated driving control algorithm designed to enhance human acceptance in autonomous vehicles. To achieve this, we... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 7848 |
| SubjectTerms | Acceptance Algorithms autoencoder Autoencoders Automation Autonomous driving Autonomous vehicles Control algorithms Control theory Data collection Data mining data visualization deep learning Discomfort Driver behavior driving behavior Feature extraction human factor Long short term memory Passenger comfort Quality assessment ride comfort Riding quality risk assessment Roads Safety Trajectory Vehicles |
| Title | Design of Data Driven Automated Driving Control Algorithm for Enhanced Human Acceptance |
| URI | https://ieeexplore.ieee.org/document/11121895 https://www.proquest.com/docview/3271168087 |
| Volume | 71 |
| WOSCitedRecordID | wos001616650700045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-4127 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014528 issn: 0098-3063 databaseCode: RIE dateStart: 19750101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBZxGFgjywMKR1nDiOx6gPMaCKoUC3yK_QSpCgNOX3YzsJVEIMbJF1iaI72_ed77szALcB5caPOlajJl5oXIrHfYQ8HmWYI5z5oSukfX6gs1m8WLDHpljd1cJorR35TA_so8vlq0Ju7FHZ0KxL45EY2QW7lEZ1sdZ3yiAkOG4bZBocHLQ5ScSG89HERIKYDAIDn7Ht77Tlg9ylKr92Yudepkf__LFjcNjgSJjUhj8BOzo_BQdb3QXPwMvYsTNgkcExrzgcl3Zng8mmKgxM1coNGEk4qunqMHl7LcpVtXyHBsnCSb507ADozvlhIi0Bxo50wdN0Mh_de809Cp7EIa08FYaZUMIEo5hIzFRIlJYGOSEmlKI8ZpqISAVGyM8CHulQURuFMOljRKVQwTno5EWuLwCUKhaS8AxHwkAPzmOCfCE550hkMVOkB-5azaYfdbuM1IUZiKXGCqm1QtpYoQe6VpM_co0Se6Df2iJtFtQ6DTD1fXtNCL3847UrsG-_XpPz-qBTlRt9DfbkZ7ValzdurnwBJoO8LA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BQQIGnkUUCnhgYQg4jt3EY9WHQJSKoUC3yK9QJGhQSfn92E4KSIiBLbIuSnRn-77zfXcGOItiYf2oZzUaFlDrUgIRYhyIVkYEJllIfSHtwyAeDpPxmN9Vxeq-FsYY48ln5sI9-ly-ztXcHZVd2nVpPRJny7DCKCW4LNf6ShpQRpJFi0yLhKNFVhLzy1GnZ2NBwi4iC6CJ6_D0wwv5a1V-7cXewfS3_vlr27BZIUnULk2_A0tmugsbP_oL7sFj1_MzUJ6hrigE6s7c3oba8yK3QNVoP2AlUackrKP2y1M-ey4mr8hiWdSbTjw_APmTftRWjgLjRupw3--NOldBdZNCoAiNi0BTmkktbThKmCJcU6aNstgJc6l1LBJumGzpyAqFWSRahurYxSFchQTHSupoH2rTfGoOACmdSMVERlrSgg8hEoZDqYQQWGYJ16wB5wvNpm9lw4zUBxqYp9YKqbNCWlmhAXWnyW-5SokNaC5skVZL6j2NSByG7qKQ-PCP105h7Wp0O0gH18ObI1h3Xyqpek2oFbO5OYZV9VE8v89O_Lz5BBtlv3M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+Data+Driven+Automated+Driving+Control+Algorithm+for+Enhanced+Human+Acceptance&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Shin%2C+Donghoon&rft.au=Han%2C+YongHa&rft.au=Kang-Moon%2C+Park&rft.date=2025-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0098-3063&rft.eissn=1558-4127&rft.volume=71&rft.issue=2&rft.spage=7848&rft.epage=7863&rft_id=info:doi/10.1109%2FTCE.2025.3597297&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon |