Design of Data Driven Automated Driving Control Algorithm for Enhanced Human Acceptance

This article presents a data-driven automated driving control algorithm designed to enhance human acceptance in autonomous vehicles. To achieve this, we utilize an LSTM autoencoder to extract latent driving features from collected data, which are then clustered into lateral and longitudinal behavior...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on consumer electronics Vol. 71; no. 3; pp. 7848 - 7863
Main Authors: Shin, Donghoon, Han, YongHa, Park, Kang-Moon
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0098-3063, 1558-4127
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article presents a data-driven automated driving control algorithm designed to enhance human acceptance in autonomous vehicles. To achieve this, we utilize an LSTM autoencoder to extract latent driving features from collected data, which are then clustered into lateral and longitudinal behaviors. These clustered behaviors serve as the foundation for generating steering and acceleration profiles, enabling the automated driving system to replicate individualized human driving styles. By incorporating three distinct driving behaviors, the proposed approach effectively mitigates potential sources of discomfort, such as excessive jerk and abrupt accelerations, ensuring a smoother ride experience. Additionally, we introduce a comprehensive ride quality evaluation metric that considers both trajectory similarity (trajectory score) and passenger comfort (comfort energy expression). The effectiveness of the proposed algorithm is validated through real-world vehicle tests, focusing on driving scenarios known to cause ride discomfort. Experimental results demonstrate that the automated driving control framework successfully enhances ride quality while adapting to individual passenger driving preferences, thus improving overall human acceptance of autonomous vehicles.
AbstractList This article presents a data-driven automated driving control algorithm designed to enhance human acceptance in autonomous vehicles. To achieve this, we utilize an LSTM autoencoder to extract latent driving features from collected data, which are then clustered into lateral and longitudinal behaviors. These clustered behaviors serve as the foundation for generating steering and acceleration profiles, enabling the automated driving system to replicate individualized human driving styles. By incorporating three distinct driving behaviors, the proposed approach effectively mitigates potential sources of discomfort, such as excessive jerk and abrupt accelerations, ensuring a smoother ride experience. Additionally, we introduce a comprehensive ride quality evaluation metric that considers both trajectory similarity (trajectory score) and passenger comfort (comfort energy expression). The effectiveness of the proposed algorithm is validated through real-world vehicle tests, focusing on driving scenarios known to cause ride discomfort. Experimental results demonstrate that the automated driving control framework successfully enhances ride quality while adapting to individual passenger driving preferences, thus improving overall human acceptance of autonomous vehicles.
Author Han, YongHa
Shin, Donghoon
Park, Kang-Moon
Author_xml – sequence: 1
  givenname: Donghoon
  orcidid: 0000-0002-6280-7550
  surname: Shin
  fullname: Shin, Donghoon
  email: dhshin@kmou.ac.kr
  organization: Division of Artificial Intelligence Engineering, Korea Maritime and Ocean University, Busan, Republic of Korea
– sequence: 2
  givenname: YongHa
  orcidid: 0009-0004-2434-6310
  surname: Han
  fullname: Han, YongHa
  email: yongha@hyundai.com
  organization: Virtual Technology Innovation Research Laboratory, Hyundai Motor Company, Gyeonggi, Republic of Korea
– sequence: 3
  givenname: Kang-Moon
  orcidid: 0000-0003-2452-9438
  surname: Park
  fullname: Park, Kang-Moon
  email: kmpark@ut.ac.kr
  organization: Department of Electronic Engineering, Korea National University of Transportation, Chungju, Republic of Korea
BookMark eNpFkE1LAzEURYMo2Fb3LlwEXE_N5yRZlrZaoeCm4jJkkkw7pZPUTEbw3zu1BVcPLufeB2cMrkMMHoAHjKYYI_W8mS-nBBE-pVwJosQVGGHOZcEwEddghJCSBUUlvQXjrtsjhBkncgQ-F75rtgHGGi5MNnCRmm8f4KzPsTXZu7-gCVs4jyGneICzwzamJu9aWMcEl2Fngh2wVd-aoWatP-ZTcgduanPo_P3lTsDHy3IzXxXr99e3-WxdWMJELhxjdeUqSiXhlijHuPOWM45U5ZwwUnlelY4OEK6pKT1zgotSKosJErZydAKezrvHFL9632W9j30Kw0tNicC4lEiKgUJnyqbYdcnX-pia1qQfjZE-6dODPn3Spy_6hsrjudJ47_9xjAmWitNfUKxtOw
CODEN ITCEDA
Cites_doi 10.4271/2020-01-0737
10.1007/978-981-13-7139-4_27
10.3390/s23125551
10.1145/3450267.3450542
10.1109/TITS.2018.2823744
10.1177/1687814020974532
10.1109/TITS.2024.3432755
10.1016/j.ijinfomgt.2020.102282
10.1109/JSEN.2022.3230361
10.1109/TCYB.2019.2945999
10.1007/s11222-007-9033-z
10.1111/mice.12787
10.1007/s10618-021-00796-y
10.3390/math11020474
10.4271/2019-26-0098
10.1109/OJVT.2023.3335180
10.34133/research.0402
10.1109/TVT.2020.2996681
10.1109/MITS.2019.2953533
10.1109/tce.2024.3514658
10.1109/MNET.018.2300125
10.1007/978-3-319-26054-9
10.1109/ACCESS.2022.3156275
10.1109/ACCESS.2020.2983149
10.70470/shifra/2023/005
10.1109/TITS.2024.3409874
10.1109/TVT.2022.3142246
10.1016/j.conengprac.2016.03.016
10.1111/mice.12934
10.1007/978-3-319-42408-8_14
10.1109/TCE.2024.3357985
10.1007/s12239-021-0080-9
10.1109/TVT.2020.2980197
10.3390/app13020946
10.1007/978-981-19-0619-0_34
10.1109/TCE.2023.3245334
10.1109/TVT.2021.3131751
10.1109/ACCESS.2025.3529883
10.1109/ACCESS.2024.3380369
10.1007/s11665-024-09501-8
10.1126/science.aaf2654
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/TCE.2025.3597297
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) Online
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-4127
EndPage 7863
ExternalDocumentID 10_1109_TCE_2025_3597297
11121895
Genre orig-research
GrantInformation_xml – fundername: Korea Institute of Energy Technology Evaluation and Planning through the Korea government
  grantid: RS-2025-02308939
  funderid: 10.13039/501100007053
– fundername: Hyundai Motor Company
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c247t-d44fbdb33825c29d45dec54509bdd7a89e5b6d34fb1f3a6e4d757689c1207cbd3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001616650700045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-3063
IngestDate Thu Nov 27 15:42:16 EST 2025
Sat Nov 29 06:50:35 EST 2025
Wed Nov 19 08:27:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-d44fbdb33825c29d45dec54509bdd7a89e5b6d34fb1f3a6e4d757689c1207cbd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6280-7550
0009-0004-2434-6310
0000-0003-2452-9438
PQID 3271168087
PQPubID 85469
PageCount 16
ParticipantIDs proquest_journals_3271168087
ieee_primary_11121895
crossref_primary_10_1109_TCE_2025_3597297
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on consumer electronics
PublicationTitleAbbrev T-CE
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref58
ref53
ref55
Navarro (ref52) 2020
ref54
Behrisch (ref59)
Song (ref4) 2024; 25
Myoung (ref36)
ref16
ref19
ref18
Homayouni (ref41)
ref50
ref46
Chougule (ref13) 2024; 5
Son (ref34)
ref42
ref44
Chen (ref5) 2024; 25
ref8
ref7
Yakub (ref23)
ref3
Stoica (ref47) 2023
ref40
Rong (ref57)
ref35
ref37
ref31
(ref48) 2024
Zhang (ref9) 2024; 70
ref30
ref33
Liu (ref10)
ref32
ref2
ref1
ref39
Rastgoftar (ref14)
Liu (ref17)
ref24
(ref49) 2025
ref25
ref20
Bapat (ref51) 2019
ref22
ref21
Morales (ref38)
Deng (ref6) 2023
Shaham (ref43) 2018
Shin (ref26) 2025; 13
ref28
ref27
ref29
(ref11) 2025
Dosovitskiy (ref56)
Ng (ref45)
References_xml – volume-title: Using Reinforcement Learning and Simulation to Develop Autonomous Vehicle Control Strategies
  year: 2020
  ident: ref52
  doi: 10.4271/2020-01-0737
– start-page: 66
  volume-title: Proc. IEEE Int. Conf. Autom. Control Intell. Syst. (I2CACIS)
  ident: ref23
  article-title: Enhancing vehicle ride comfort through intelligent based control
– ident: ref1
  doi: 10.1007/978-981-13-7139-4_27
– ident: ref28
  doi: 10.3390/s23125551
– start-page: 622
  volume-title: Proc. IEEE Int. Conf. Softw. Anal., Evol. Reeng. (SANER)
  ident: ref10
  article-title: An analysis of testing scenarios for automated driving systems
– ident: ref24
  doi: 10.1145/3450267.3450542
– start-page: 2737
  volume-title: Proc. IEEE/RSJ Int. Conf. Intell. Robots Sys.
  ident: ref38
  article-title: Human-comfortable navigation for an autonomous robotic wheelchair
– ident: ref54
  doi: 10.1109/TITS.2018.2823744
– ident: ref8
  doi: 10.1177/1687814020974532
– volume: 25
  start-page: 17733
  issue: 11
  year: 2024
  ident: ref5
  article-title: Joint scene flow estimation and moving object segmentation on rotational LiDAR data
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2024.3432755
– ident: ref31
  doi: 10.1016/j.ijinfomgt.2020.102282
– start-page: 5068
  volume-title: Proc. IEEE Int. Conf. Big Data (Big Data)
  ident: ref41
  article-title: An autocorrelation-based LSTM-autoencoder for anomaly detection on time-series data
– year: 2018
  ident: ref43
  article-title: SpectralNet: Spectral clustering using deep neural networks
  publication-title: arXiv:1801.01587
– ident: ref29
  doi: 10.1109/JSEN.2022.3230361
– ident: ref42
  doi: 10.1109/TCYB.2019.2945999
– ident: ref46
  doi: 10.1007/s11222-007-9033-z
– ident: ref32
  doi: 10.1111/mice.12787
– start-page: 526
  volume-title: Proc. KSAE
  ident: ref36
  article-title: Human driving behavior categorization using spectral clustering for highly automated driving in urban traffic situation
– start-page: 1
  volume-title: Proc. 1st Annu. Conf. Robot Learn.
  ident: ref56
  article-title: CARLA: An open urban driving simulator
– ident: ref44
  doi: 10.1007/s10618-021-00796-y
– ident: ref33
  doi: 10.3390/math11020474
– volume-title: Development of Autonomous Vehicle Controller
  year: 2019
  ident: ref51
  doi: 10.4271/2019-26-0098
– volume: 5
  start-page: 142
  year: 2024
  ident: ref13
  article-title: A Comprehensive review on limitations of autonomous driving and its impact on accidents and collisions
  publication-title: IEEE Open J. Veh. Technol.
  doi: 10.1109/OJVT.2023.3335180
– start-page: 119
  volume-title: Proc. 5th Int. Conf. Intell. Auton. Syst. (ICoIAS)
  ident: ref17
  article-title: Data-driven human-like path planning for autonomous driving based on imitation learning
– year: 2023
  ident: ref6
  article-title: Evaluation and control model design of human factors for autonomous driving systems
  publication-title: arXiv:2307.00720
– start-page: 576
  volume-title: Proc. IEEE Int. Conf. Mechatronics (ICM)
  ident: ref34
  article-title: Simulation-based testing framework for autonomous driving development
– ident: ref22
  doi: 10.34133/research.0402
– ident: ref39
  doi: 10.1109/TVT.2020.2996681
– ident: ref40
  doi: 10.1109/MITS.2019.2953533
– ident: ref2
  doi: 10.1109/tce.2024.3514658
– ident: ref21
  doi: 10.1109/MNET.018.2300125
– start-page: 5876
  volume-title: Proc. Annu. Amer. Control Conf. (ACC)
  ident: ref14
  article-title: A data-driven approach for autonomous motion planning and control in off-road driving scenarios
– ident: ref27
  doi: 10.1007/978-3-319-26054-9
– ident: ref50
  doi: 10.1109/ACCESS.2022.3156275
– ident: ref12
  doi: 10.1109/ACCESS.2020.2983149
– ident: ref20
  doi: 10.70470/shifra/2023/005
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref45
  article-title: On spectral clustering: Analysis and an algorithm
– volume: 25
  start-page: 16687
  issue: 11
  year: 2024
  ident: ref4
  article-title: Subjective driving risk prediction based on spatiotemporal distribution features of human driver’s cognitive risk
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2024.3409874
– ident: ref15
  doi: 10.1109/TVT.2022.3142246
– ident: ref55
  doi: 10.1016/j.conengprac.2016.03.016
– ident: ref7
  doi: 10.1111/mice.12934
– ident: ref53
  doi: 10.1007/978-3-319-42408-8_14
– volume-title: Siheung city implements autonomous driving mobility service
  year: 2024
  ident: ref48
– ident: ref3
  doi: 10.1109/TCE.2024.3357985
– ident: ref35
  doi: 10.1007/s12239-021-0080-9
– ident: ref16
  doi: 10.1109/TVT.2020.2980197
– volume-title: MicroAutoBox II embedded PC
  year: 2025
  ident: ref49
– year: 2023
  ident: ref47
  article-title: Pearson-Matthews correlation coefficients for binary and multinary classification and hypothesis testing
  publication-title: arXiv:2305.05974
– start-page: 1
  volume-title: Proc. IEEE 23rd Int. Conf. Intell. Transp. Syst. (ITSC)
  ident: ref57
  article-title: LGSVL simulator: A high fidelity simulator for autonomous driving
– ident: ref25
  doi: 10.3390/app13020946
– ident: ref30
  doi: 10.1007/978-981-19-0619-0_34
– volume-title: Evolution and Reengineering (SANER). IEEE, 2021. What are the Different Levels of Self-Driving Cars? The Car Connection
  year: 2025
  ident: ref11
– volume: 70
  start-page: 3384
  issue: 1
  year: 2024
  ident: ref9
  article-title: Elastic tracking operation method for high-speed railway using deep reinforcement learning
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2023.3245334
– ident: ref18
  doi: 10.1109/TVT.2021.3131751
– volume: 13
  start-page: 12832
  year: 2025
  ident: ref26
  article-title: Clustering and investigation of human driving behavior using autoencoder and risk assessment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3529883
– start-page: 55
  volume-title: Proc. 3rd Int. Conf. Adv. Syst. Simul. SIMUL
  ident: ref59
  article-title: SUMO–simulation of urban mobility: An overview
– ident: ref58
  doi: 10.1109/ACCESS.2024.3380369
– ident: ref19
  doi: 10.1007/s11665-024-09501-8
– ident: ref37
  doi: 10.1126/science.aaf2654
SSID ssj0014528
Score 2.44119
Snippet This article presents a data-driven automated driving control algorithm designed to enhance human acceptance in autonomous vehicles. To achieve this, we...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 7848
SubjectTerms Acceptance
Algorithms
autoencoder
Autoencoders
Automation
Autonomous driving
Autonomous vehicles
Control algorithms
Control theory
Data collection
Data mining
data visualization
deep learning
Discomfort
Driver behavior
driving behavior
Feature extraction
human factor
Long short term memory
Passenger comfort
Quality assessment
ride comfort
Riding quality
risk assessment
Roads
Safety
Trajectory
Vehicles
Title Design of Data Driven Automated Driving Control Algorithm for Enhanced Human Acceptance
URI https://ieeexplore.ieee.org/document/11121895
https://www.proquest.com/docview/3271168087
Volume 71
WOSCitedRecordID wos001616650700045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-4127
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014528
  issn: 0098-3063
  databaseCode: RIE
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBZxGFgjywMKR1nDiOx6gPMaCKoUC3yK_QSpCgNOX3YzsJVEIMbJF1iaI72_ed77szALcB5caPOlajJl5oXIrHfYQ8HmWYI5z5oSukfX6gs1m8WLDHpljd1cJorR35TA_so8vlq0Ju7FHZ0KxL45EY2QW7lEZ1sdZ3yiAkOG4bZBocHLQ5ScSG89HERIKYDAIDn7Ht77Tlg9ylKr92Yudepkf__LFjcNjgSJjUhj8BOzo_BQdb3QXPwMvYsTNgkcExrzgcl3Zng8mmKgxM1coNGEk4qunqMHl7LcpVtXyHBsnCSb507ADozvlhIi0Bxo50wdN0Mh_de809Cp7EIa08FYaZUMIEo5hIzFRIlJYGOSEmlKI8ZpqISAVGyM8CHulQURuFMOljRKVQwTno5EWuLwCUKhaS8AxHwkAPzmOCfCE550hkMVOkB-5azaYfdbuM1IUZiKXGCqm1QtpYoQe6VpM_co0Se6Df2iJtFtQ6DTD1fXtNCL3847UrsG-_XpPz-qBTlRt9DfbkZ7ValzdurnwBJoO8LA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BQQIGnkUUCnhgYQg4jt3EY9WHQJSKoUC3yK9QJGhQSfn92E4KSIiBLbIuSnRn-77zfXcGOItiYf2oZzUaFlDrUgIRYhyIVkYEJllIfSHtwyAeDpPxmN9Vxeq-FsYY48ln5sI9-ly-ztXcHZVd2nVpPRJny7DCKCW4LNf6ShpQRpJFi0yLhKNFVhLzy1GnZ2NBwi4iC6CJ6_D0wwv5a1V-7cXewfS3_vlr27BZIUnULk2_A0tmugsbP_oL7sFj1_MzUJ6hrigE6s7c3oba8yK3QNVoP2AlUackrKP2y1M-ey4mr8hiWdSbTjw_APmTftRWjgLjRupw3--NOldBdZNCoAiNi0BTmkktbThKmCJcU6aNstgJc6l1LBJumGzpyAqFWSRahurYxSFchQTHSupoH2rTfGoOACmdSMVERlrSgg8hEoZDqYQQWGYJ16wB5wvNpm9lw4zUBxqYp9YKqbNCWlmhAXWnyW-5SokNaC5skVZL6j2NSByG7qKQ-PCP105h7Wp0O0gH18ObI1h3Xyqpek2oFbO5OYZV9VE8v89O_Lz5BBtlv3M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+Data+Driven+Automated+Driving+Control+Algorithm+for+Enhanced+Human+Acceptance&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Shin%2C+Donghoon&rft.au=Han%2C+YongHa&rft.au=Kang-Moon%2C+Park&rft.date=2025-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0098-3063&rft.eissn=1558-4127&rft.volume=71&rft.issue=2&rft.spage=7848&rft.epage=7863&rft_id=info:doi/10.1109%2FTCE.2025.3597297&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon