Intelligent assessment of pressure in women’s loungewear based on machine learning algorithms
Since the dynamic and static scenarios of women’s loungewear involve multiple parts of bodies, it becomes a major factor in the assessment of comfort to measure dynamic pressure in loungewear. This study established a mathematical model for intelligent prediction of clothing pressure with 14 paramet...
Saved in:
| Published in: | Textile research journal |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
10.04.2025
|
| ISSN: | 0040-5175, 1746-7748 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Since the dynamic and static scenarios of women’s loungewear involve multiple parts of bodies, it becomes a major factor in the assessment of comfort to measure dynamic pressure in loungewear. This study established a mathematical model for intelligent prediction of clothing pressure with 14 parameters based on fabric properties and shape size. Combining major influencing factors of clothing pressure, this model measures the clothing pressure exerted on the elbows, waist, buttocks, and knees in three scenes and seven postures, to study the predictive performance of support vector regression (SVR), backpropagation neural network (BPNN), and genetic algorithm (GA)-BPNN for dynamic pressure in women’s loungewear. According to the results, the accuracy of the three machine learning algorithms in the prediction of clothing pressure in loungewear, in descending order, is GA-BPNN, BPNN, and SVR. With complex influencing factors and limited sample sizes, the average relative errors of GA-BPNN for predicting the pressure on four body parts are 2.87%, 3.55%, 3.36%, and 4.35%, respectively, which can yield a science-based reference for the assessment of comfort in women’s loungewear. |
|---|---|
| AbstractList | Since the dynamic and static scenarios of women’s loungewear involve multiple parts of bodies, it becomes a major factor in the assessment of comfort to measure dynamic pressure in loungewear. This study established a mathematical model for intelligent prediction of clothing pressure with 14 parameters based on fabric properties and shape size. Combining major influencing factors of clothing pressure, this model measures the clothing pressure exerted on the elbows, waist, buttocks, and knees in three scenes and seven postures, to study the predictive performance of support vector regression (SVR), backpropagation neural network (BPNN), and genetic algorithm (GA)-BPNN for dynamic pressure in women’s loungewear. According to the results, the accuracy of the three machine learning algorithms in the prediction of clothing pressure in loungewear, in descending order, is GA-BPNN, BPNN, and SVR. With complex influencing factors and limited sample sizes, the average relative errors of GA-BPNN for predicting the pressure on four body parts are 2.87%, 3.55%, 3.36%, and 4.35%, respectively, which can yield a science-based reference for the assessment of comfort in women’s loungewear. |
| Author | Chen, Yasong Zhou, Jinxiang Yin, Lanjun Fu, Guangwei Wang, Wenshu He, Yin Wang, Chunhong Tan, Xiaoxuan Yang, Daopeng |
| Author_xml | – sequence: 1 givenname: Xiaoxuan surname: Tan fullname: Tan, Xiaoxuan organization: School of Textile Science and Engineering, Tiangong University, Tianjin, China – sequence: 2 givenname: Chunhong orcidid: 0000-0002-1442-4029 surname: Wang fullname: Wang, Chunhong organization: School of Textile Science and Engineering, Tiangong University, Tianjin, China – sequence: 3 givenname: Yin surname: He fullname: He, Yin organization: School of Textile Science and Engineering, Tiangong University, Tianjin, China – sequence: 4 givenname: Wenshu surname: Wang fullname: Wang, Wenshu organization: School of Textile Science and Engineering, Tiangong University, Tianjin, China – sequence: 5 givenname: Yasong orcidid: 0000-0001-8634-7221 surname: Chen fullname: Chen, Yasong organization: School of Mathematics, Tiangong University, Tianjin, China – sequence: 6 givenname: Jinxiang surname: Zhou fullname: Zhou, Jinxiang organization: Shenzhen Purcotton Ltd., Shenzhen, China – sequence: 7 givenname: Lanjun surname: Yin fullname: Yin, Lanjun organization: Shenzhen Purcotton Ltd., Shenzhen, China – sequence: 8 givenname: Daopeng surname: Yang fullname: Yang, Daopeng organization: CNTAC Testing Services Co., Ltd. (Shaoxing), Shaoxing, China – sequence: 9 givenname: Guangwei surname: Fu fullname: Fu, Guangwei organization: China textile engineering society, Beijing, China, College of Textiles, Donghua University, Shanghai, China |
| BookMark | eNp9kE1OwzAQhS1UJNrCAdj5AgH_xZMsUcVPpUpsYB05iZ0aOXZlG1XsuAbX4yQkghVIrGbem_ne4q3QwgevEbqk5IpSgGtCBCkplKyknPKS0RO0pCBkASCqBVrO92J-OEOrlF4IIVUF1RI1W5-1c3bQPmOVkk5pnNdg8CFO4jVqbD0-hsn9fP9I2IVXP-ijVhG3KukeB49H1e2t19hNrrd-wMoNIdq8H9M5OjXKJX3xM9fo-e72afNQ7B7vt5ubXdExAbnomaprAKY7IUved20vhekJM7zkhiihxKS5NNrIlvRcQg2tFDU1UPOe0ZqvEf3O7WJIKWrTHKIdVXxrKGnmhpo_DU0M_GI6m1W2weeorPuH_AJEEW4J |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2025_117952 |
| Cites_doi | 10.1007/s00521-020-05604-0 10.1016/j.knosys.2011.02.007 10.1108/IJCST-05-2020-0078 10.1177/0040517520987520 10.1016/j.aej.2021.08.057 10.1088/1742-6596/1790/1/012043 10.1016/j.enbuild.2023.113069 10.1007/s11277-018-5245-0 10.3233/JIFS-189578 10.1177/0040517519896761 10.1177/004051756603600105 10.1108/IJCST-09-2019-0143 10.1177/1558925019879290 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1177/00405175251313521 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1746-7748 |
| ExternalDocumentID | 10_1177_00405175251313521 |
| GroupedDBID | -ET -~X .-4 .2L .2N .DC 01A 0R~ 123 18M 1~K 29Q 31W 31X 31Z 4.4 54M 56W 5VS 8R4 8R5 AABCJ AABOD AACTG AADIR AAHBH AAJPV AAPEO AAPII AAQXI AATAA AATBZ AAYXX ABAWP ABCCA ABCJG ABFXH ABHQH ABIDT ABJCF ABJNI ABLUO ABPNF ABQKF ABQPY ABQXT ABUAX ABUJY ACCVC ACDXX ACFUR ACFZE ACGFO ACGFS ACGOD ACIWK ACLZU ACOXC ACROE ACSIQ ACUAV ACUIR ACXKE ADDLC ADEBD ADFRT ADNON ADNWM ADRRZ ADTOS ADVBO AEDFJ AEDXQ AENEX AEPTA AESZF AEUHG AEVPJ AEWDL AEWHI AFKBI AFKRG AFMOU AFQAA AFRAH AGDVU AGKLV AGNWV AGWFA AGWNL AHDMH AHWHD AJGYC AJHME AJUZI AJVBE ALMA_UNASSIGNED_HOLDINGS AMNSR ANDLU ARTOV ATCPS AUTPY AUVAJ AYAKG AYPQM AZFZN B8T B8Z B94 BBRGL BCU BDDNI BDZRT BENPR BLC BMVBW BPACV BYIEH CITATION CS3 DG~ DH. DO- DU5 DV7 DV8 E.- EBS FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HF~ HVGLF HZ~ J8X K.F M0K N9A O9- OFU P.B P2P Q1R Q2X Q7P Q83 ROL RXW S01 SAUOL SCNPE SFB SFC SFK SFT SGU SGV SGZ SHB SPJ SPK SPP SPV SSDHQ STM TAE U5U WH7 ~KM |
| ID | FETCH-LOGICAL-c247t-d2a99772ec4653dcbd64fd02f353f0a4a464f36fef6b0d36797b6491f793d2193 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001464958300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0040-5175 |
| IngestDate | Sat Nov 29 07:50:39 EST 2025 Tue Nov 18 21:49:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c247t-d2a99772ec4653dcbd64fd02f353f0a4a464f36fef6b0d36797b6491f793d2193 |
| ORCID | 0000-0001-8634-7221 0000-0002-1442-4029 |
| ParticipantIDs | crossref_primary_10_1177_00405175251313521 crossref_citationtrail_10_1177_00405175251313521 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-10 |
| PublicationDateYYYYMMDD | 2025-04-10 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | Textile research journal |
| PublicationYear | 2025 |
| References | e_1_3_4_2_2 Wang FF. (e_1_3_4_17_2) 2022 Liang R (e_1_3_4_12_2) 2020; 32 Cheng P (e_1_3_4_18_2) 2021; 33 Dai J (e_1_3_4_16_2) 2021; 1 Noor A (e_1_3_4_7_2) 2021 Chen W (e_1_3_4_15_2) 2021 e_1_3_4_9_2 Li Y. (e_1_3_4_23_2) 2002 e_1_3_4_6_2 Meng XL (e_1_3_4_5_2) 2006; 7 e_1_3_4_22_2 Sümeyye Ü (e_1_3_4_25_2) 2020 e_1_3_4_20_2 e_1_3_4_27_2 Zhang G, Xu J, Nie Y (e_1_3_4_19_2) 2008 e_1_3_4_29_2 Jing WQ (e_1_3_4_24_2) 2023; 289 Wei G. (e_1_3_4_26_2) 2011; 24 Zha L (e_1_3_4_21_2) 2019; 14 Fengyi L (e_1_3_4_11_2) 2022; 2022 Guo Y. (e_1_3_4_13_2) 2020 Zhang XX (e_1_3_4_32_2) 2020; 41 Cheng P (e_1_3_4_33_2) 2021; 22 Jin G (e_1_3_4_3_2) 2022; 5 Liu K, Zeng X, Bruniaux P (e_1_3_4_8_2) 2017 Zhou J (e_1_3_4_10_2) 2020; 90 Zhenlong H (e_1_3_4_28_2) 2018; 102 Cheng N (e_1_3_4_4_2) 2019; 56 Han J-X (e_1_3_4_34_2) 2021; 33 Zhou M. (e_1_3_4_31_2) 1999 Zhang J (e_1_3_4_30_2) 2021 Wu Z (e_1_3_4_14_2) 2010; 29 |
| References_xml | – volume: 2022 issue: 1 year: 2022 ident: e_1_3_4_11_2 article-title: 3D Garment Design Model Based on Convolution Neural Network and Virtual Reality publication-title: Computat Intell Neurosci – volume: 33 start-page: 4111 year: 2021 ident: e_1_3_4_34_2 article-title: Product modeling design based on genetic algorithm and BP neural network publication-title: Neural Comput Applicat doi: 10.1007/s00521-020-05604-0 – volume: 29 start-page: 26 issue: 5 year: 2010 ident: e_1_3_4_14_2 article-title: Subjective assessment of comfort threshold of clothing pressure on human neck based on BP neural networks publication-title: J Tiangong Univ – volume-title: Research on Clothing Pressure Prediction Based on Improved BP Neural Network year: 2020 ident: e_1_3_4_13_2 – volume: 1 start-page: 2982729 year: 2021 ident: e_1_3_4_16_2 article-title: Children’s clothing virtual simulation immersive design and show based on machine learning publication-title: Mobile Inform Syst – volume: 24 start-page: 672 issue: 5 year: 2011 ident: e_1_3_4_26_2 article-title: Grey relational analysis model for dynamic hybrid multiple attribute decision making publication-title: Knowledge-Based Syst doi: 10.1016/j.knosys.2011.02.007 – volume: 33 start-page: 619 issue: 4 year: 2021 ident: e_1_3_4_18_2 article-title: Research on underwear pressure prediction based on improved GA-BP algorithm publication-title: Int J Cloth Sci Technol doi: 10.1108/IJCST-05-2020-0078 – volume: 41 start-page: 121 issue: 8 year: 2020 ident: e_1_3_4_32_2 article-title: Prediction of loom efficiency based on BP neural network and its improved algorithm publication-title: J Text Res – volume: 7 start-page: 109 year: 2006 ident: e_1_3_4_5_2 article-title: Progress of study on pressure comfort of clothing publication-title: J Text Res – ident: e_1_3_4_9_2 doi: 10.1177/0040517520987520 – ident: e_1_3_4_29_2 doi: 10.1016/j.aej.2021.08.057 – year: 2021 ident: e_1_3_4_7_2 article-title: A review of artificial intelligence applications in apparel industry publication-title: J Text Inst – volume: 56 start-page: 38 issue: 3 year: 2019 ident: e_1_3_4_4_2 article-title: Research method and development tendency of garment pressure comfort publication-title: J Silk – year: 2021 ident: e_1_3_4_30_2 article-title: Optimization of backpropagation neural network under the adaptive genetic algorithm publication-title: Complexity – volume: 22 start-page: 607 issue: 6 year: 2021 ident: e_1_3_4_33_2 article-title: Research on prediction model of thermal and moisture comfort of underwear based on principal component analysis and genetic algorithm–back propagation neural network publication-title: J Nonlin Complex Data Sci – year: 2020 ident: e_1_3_4_25_2 article-title: Optimization of coating process conditions for denim fabrics by Taguchi method and Grey relational analysis publication-title: J Nat Fibers – year: 2017 ident: e_1_3_4_8_2 article-title: Fit evaluation of virtual garment try-on by learning from digital pressure data publication-title: Knowledge-Based Syst – volume: 90 start-page: 2564 issue: 21 year: 2020 ident: e_1_3_4_10_2 article-title: Establishing a genetic algorithm-back propagation model to predict the pressure of girdles and to determine the model function publication-title: Text Res J – ident: e_1_3_4_6_2 doi: 10.1088/1742-6596/1790/1/012043 – volume: 289 start-page: 113069 year: 2023 ident: e_1_3_4_24_2 article-title: Outdoor clothing choice for different populations in cold regions: A clothing choice prediction model based on machine learning publication-title: Energy Buildings doi: 10.1016/j.enbuild.2023.113069 – volume: 5 start-page: 75 year: 2022 ident: e_1_3_4_3_2 article-title: Main factors affecting clothing pressure comfort and measurement methods publication-title: Knitting Ind – volume: 102 start-page: 1905 year: 2018 ident: e_1_3_4_28_2 article-title: The prediction model of cotton yarn intensity based on the CNN-BP neural network publication-title: Wireless Personal Commun doi: 10.1007/s11277-018-5245-0 – volume-title: Prediction of Body-Shaping Clothes’ Loading Pressure and Shaping Effect Based on GA-BP Neural Network year: 2022 ident: e_1_3_4_17_2 – volume-title: Standardization Administration of the People’s Republic of China. Standard sizing systems for garments—women: GB/T 1335.2-2008 year: 2008 ident: e_1_3_4_19_2 – start-page: 7577 year: 2021 ident: e_1_3_4_15_2 article-title: Research on influence mechanism of running clothing fatigue based on BP neural network publication-title: J Intell Fuzzy Syst doi: 10.3233/JIFS-189578 – volume-title: Principles and Applications of Genetic Algorithm year: 1999 ident: e_1_3_4_31_2 – ident: e_1_3_4_27_2 doi: 10.1177/0040517519896761 – ident: e_1_3_4_20_2 doi: 10.1177/004051756603600105 – volume: 32 start-page: 921 year: 2020 ident: e_1_3_4_12_2 article-title: Computational modelling methods for sports bra–body interactions publication-title: Int J Cloth Sci Technol doi: 10.1108/IJCST-09-2019-0143 – volume-title: Clothing Comfort and Product Development year: 2002 ident: e_1_3_4_23_2 – ident: e_1_3_4_22_2 doi: 10.1177/1558925019879290 – ident: e_1_3_4_2_2 – volume: 14 start-page: 155892501987265 year: 2019 ident: e_1_3_4_21_2 article-title: Study of an arm model for compression sleeve design and garment pressure measurement publication-title: J Eng Fibers Fabrics |
| SSID | ssj0008878 |
| Score | 2.4166698 |
| Snippet | Since the dynamic and static scenarios of women’s loungewear involve multiple parts of bodies, it becomes a major factor in the assessment of comfort to... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| Title | Intelligent assessment of pressure in women’s loungewear based on machine learning algorithms |
| WOSCitedRecordID | wos001464958300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVSPB databaseName: SAGE HSS Package 2015 customDbUrl: eissn: 1746-7748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008878 issn: 0040-5175 databaseCode: AEVPJ dateStart: 19990101 isFulltext: true titleUrlDefault: http://journals.sagepub.com/ providerName: SAGE Publications |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagRQIOCAqIQkE-cGIV5CR2HseqagUIVT0sdG-r-NVE2ibVZhf2yN_o3-svYezYSbRVJXrgEiWRbUWZL_PwTL5B6CMEFRmjPAqkUFFAFZEBWEEeJAVJRMg1ER1J0vf09DSbzfIzl4ppbTuBtK6zzSa_-q-ihnsgbPPr7D3E3S8KN-AchA5HEDsc_0nwX3uSTdNExvNu2spmG1ovLU2IZV7wlQ55O1mYr179NrQ-xrBJk0S4tIWWyneWuJgUi4tmWa1Kx3DufNop6HfQLRPHG1ROxo9pNwWsZptVRbNZD2A8dzvVR-W6LhtnQO2urDUL1a2B5xBxl-vxNkXETMbFFaw61UtJwMKuTcpn1WnblCbg3ndUm7d1uc0mm3lmGvhhcQjeYjgYLp-s37JnfZVh6KnMt5d4iHajlOWgBHcPj3-efetNN2jczJdZmhkuDW4ZurYXGTkyI49k-hw9c6EEPuwg8AI9UPUeeuz_NG_30NMR2eRLNB8BAw_AwI3GHhi4qrEFxs2f6xYPkMAWEripsYME9pDAAyReoR8nx9OjL4FrrxGIiKarQEZFDt5_pITh2JOCy4RqSSIds1iTghYUruNEK51wIuMkzVOe0DzUoNIlGLr4Ndqpm1q9QZhJWjAKoaciimZK84KZRmhEEC5zzsg-Iv5dzYXjnjctUBbzO2W0jz71U6464pW7B7-9z-B36MkA0AO0s1qu1Xv0SPxaVe3yg4PEX_YTdxY |
| linkProvider | SAGE Publications |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+assessment+of+pressure+in+women%E2%80%99s+loungewear+based+on+machine+learning+algorithms&rft.jtitle=Textile+research+journal&rft.au=Tan%2C+Xiaoxuan&rft.au=Wang%2C+Chunhong&rft.au=He%2C+Yin&rft.au=Wang%2C+Wenshu&rft.date=2025-04-10&rft.issn=0040-5175&rft.eissn=1746-7748&rft_id=info:doi/10.1177%2F00405175251313521&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_00405175251313521 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5175&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5175&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5175&client=summon |