Intelligent assessment of pressure in women’s loungewear based on machine learning algorithms

Since the dynamic and static scenarios of women’s loungewear involve multiple parts of bodies, it becomes a major factor in the assessment of comfort to measure dynamic pressure in loungewear. This study established a mathematical model for intelligent prediction of clothing pressure with 14 paramet...

Full description

Saved in:
Bibliographic Details
Published in:Textile research journal
Main Authors: Tan, Xiaoxuan, Wang, Chunhong, He, Yin, Wang, Wenshu, Chen, Yasong, Zhou, Jinxiang, Yin, Lanjun, Yang, Daopeng, Fu, Guangwei
Format: Journal Article
Language:English
Published: 10.04.2025
ISSN:0040-5175, 1746-7748
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Since the dynamic and static scenarios of women’s loungewear involve multiple parts of bodies, it becomes a major factor in the assessment of comfort to measure dynamic pressure in loungewear. This study established a mathematical model for intelligent prediction of clothing pressure with 14 parameters based on fabric properties and shape size. Combining major influencing factors of clothing pressure, this model measures the clothing pressure exerted on the elbows, waist, buttocks, and knees in three scenes and seven postures, to study the predictive performance of support vector regression (SVR), backpropagation neural network (BPNN), and genetic algorithm (GA)-BPNN for dynamic pressure in women’s loungewear. According to the results, the accuracy of the three machine learning algorithms in the prediction of clothing pressure in loungewear, in descending order, is GA-BPNN, BPNN, and SVR. With complex influencing factors and limited sample sizes, the average relative errors of GA-BPNN for predicting the pressure on four body parts are 2.87%, 3.55%, 3.36%, and 4.35%, respectively, which can yield a science-based reference for the assessment of comfort in women’s loungewear.
AbstractList Since the dynamic and static scenarios of women’s loungewear involve multiple parts of bodies, it becomes a major factor in the assessment of comfort to measure dynamic pressure in loungewear. This study established a mathematical model for intelligent prediction of clothing pressure with 14 parameters based on fabric properties and shape size. Combining major influencing factors of clothing pressure, this model measures the clothing pressure exerted on the elbows, waist, buttocks, and knees in three scenes and seven postures, to study the predictive performance of support vector regression (SVR), backpropagation neural network (BPNN), and genetic algorithm (GA)-BPNN for dynamic pressure in women’s loungewear. According to the results, the accuracy of the three machine learning algorithms in the prediction of clothing pressure in loungewear, in descending order, is GA-BPNN, BPNN, and SVR. With complex influencing factors and limited sample sizes, the average relative errors of GA-BPNN for predicting the pressure on four body parts are 2.87%, 3.55%, 3.36%, and 4.35%, respectively, which can yield a science-based reference for the assessment of comfort in women’s loungewear.
Author Chen, Yasong
Zhou, Jinxiang
Yin, Lanjun
Fu, Guangwei
Wang, Wenshu
He, Yin
Wang, Chunhong
Tan, Xiaoxuan
Yang, Daopeng
Author_xml – sequence: 1
  givenname: Xiaoxuan
  surname: Tan
  fullname: Tan, Xiaoxuan
  organization: School of Textile Science and Engineering, Tiangong University, Tianjin, China
– sequence: 2
  givenname: Chunhong
  orcidid: 0000-0002-1442-4029
  surname: Wang
  fullname: Wang, Chunhong
  organization: School of Textile Science and Engineering, Tiangong University, Tianjin, China
– sequence: 3
  givenname: Yin
  surname: He
  fullname: He, Yin
  organization: School of Textile Science and Engineering, Tiangong University, Tianjin, China
– sequence: 4
  givenname: Wenshu
  surname: Wang
  fullname: Wang, Wenshu
  organization: School of Textile Science and Engineering, Tiangong University, Tianjin, China
– sequence: 5
  givenname: Yasong
  orcidid: 0000-0001-8634-7221
  surname: Chen
  fullname: Chen, Yasong
  organization: School of Mathematics, Tiangong University, Tianjin, China
– sequence: 6
  givenname: Jinxiang
  surname: Zhou
  fullname: Zhou, Jinxiang
  organization: Shenzhen Purcotton Ltd., Shenzhen, China
– sequence: 7
  givenname: Lanjun
  surname: Yin
  fullname: Yin, Lanjun
  organization: Shenzhen Purcotton Ltd., Shenzhen, China
– sequence: 8
  givenname: Daopeng
  surname: Yang
  fullname: Yang, Daopeng
  organization: CNTAC Testing Services Co., Ltd. (Shaoxing), Shaoxing, China
– sequence: 9
  givenname: Guangwei
  surname: Fu
  fullname: Fu, Guangwei
  organization: China textile engineering society, Beijing, China, College of Textiles, Donghua University, Shanghai, China
BookMark eNp9kE1OwzAQhS1UJNrCAdj5AgH_xZMsUcVPpUpsYB05iZ0aOXZlG1XsuAbX4yQkghVIrGbem_ne4q3QwgevEbqk5IpSgGtCBCkplKyknPKS0RO0pCBkASCqBVrO92J-OEOrlF4IIVUF1RI1W5-1c3bQPmOVkk5pnNdg8CFO4jVqbD0-hsn9fP9I2IVXP-ijVhG3KukeB49H1e2t19hNrrd-wMoNIdq8H9M5OjXKJX3xM9fo-e72afNQ7B7vt5ubXdExAbnomaprAKY7IUved20vhekJM7zkhiihxKS5NNrIlvRcQg2tFDU1UPOe0ZqvEf3O7WJIKWrTHKIdVXxrKGnmhpo_DU0M_GI6m1W2weeorPuH_AJEEW4J
CitedBy_id crossref_primary_10_1016_j_measurement_2025_117952
Cites_doi 10.1007/s00521-020-05604-0
10.1016/j.knosys.2011.02.007
10.1108/IJCST-05-2020-0078
10.1177/0040517520987520
10.1016/j.aej.2021.08.057
10.1088/1742-6596/1790/1/012043
10.1016/j.enbuild.2023.113069
10.1007/s11277-018-5245-0
10.3233/JIFS-189578
10.1177/0040517519896761
10.1177/004051756603600105
10.1108/IJCST-09-2019-0143
10.1177/1558925019879290
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1177/00405175251313521
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1746-7748
ExternalDocumentID 10_1177_00405175251313521
GroupedDBID -ET
-~X
.-4
.2L
.2N
.DC
01A
0R~
123
18M
1~K
29Q
31W
31X
31Z
4.4
54M
56W
5VS
8R4
8R5
AABCJ
AABOD
AACTG
AADIR
AAHBH
AAJPV
AAPEO
AAPII
AAQXI
AATAA
AATBZ
AAYXX
ABAWP
ABCCA
ABCJG
ABFXH
ABHQH
ABIDT
ABJCF
ABJNI
ABLUO
ABPNF
ABQKF
ABQPY
ABQXT
ABUAX
ABUJY
ACCVC
ACDXX
ACFUR
ACFZE
ACGFO
ACGFS
ACGOD
ACIWK
ACLZU
ACOXC
ACROE
ACSIQ
ACUAV
ACUIR
ACXKE
ADDLC
ADEBD
ADFRT
ADNON
ADNWM
ADRRZ
ADTOS
ADVBO
AEDFJ
AEDXQ
AENEX
AEPTA
AESZF
AEUHG
AEVPJ
AEWDL
AEWHI
AFKBI
AFKRG
AFMOU
AFQAA
AFRAH
AGDVU
AGKLV
AGNWV
AGWFA
AGWNL
AHDMH
AHWHD
AJGYC
AJHME
AJUZI
AJVBE
ALMA_UNASSIGNED_HOLDINGS
AMNSR
ANDLU
ARTOV
ATCPS
AUTPY
AUVAJ
AYAKG
AYPQM
AZFZN
B8T
B8Z
B94
BBRGL
BCU
BDDNI
BDZRT
BENPR
BLC
BMVBW
BPACV
BYIEH
CITATION
CS3
DG~
DH.
DO-
DU5
DV7
DV8
E.-
EBS
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HF~
HVGLF
HZ~
J8X
K.F
M0K
N9A
O9-
OFU
P.B
P2P
Q1R
Q2X
Q7P
Q83
ROL
RXW
S01
SAUOL
SCNPE
SFB
SFC
SFK
SFT
SGU
SGV
SGZ
SHB
SPJ
SPK
SPP
SPV
SSDHQ
STM
TAE
U5U
WH7
~KM
ID FETCH-LOGICAL-c247t-d2a99772ec4653dcbd64fd02f353f0a4a464f36fef6b0d36797b6491f793d2193
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001464958300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0040-5175
IngestDate Sat Nov 29 07:50:39 EST 2025
Tue Nov 18 21:49:29 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c247t-d2a99772ec4653dcbd64fd02f353f0a4a464f36fef6b0d36797b6491f793d2193
ORCID 0000-0001-8634-7221
0000-0002-1442-4029
ParticipantIDs crossref_primary_10_1177_00405175251313521
crossref_citationtrail_10_1177_00405175251313521
PublicationCentury 2000
PublicationDate 2025-04-10
PublicationDateYYYYMMDD 2025-04-10
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-10
  day: 10
PublicationDecade 2020
PublicationTitle Textile research journal
PublicationYear 2025
References e_1_3_4_2_2
Wang FF. (e_1_3_4_17_2) 2022
Liang R (e_1_3_4_12_2) 2020; 32
Cheng P (e_1_3_4_18_2) 2021; 33
Dai J (e_1_3_4_16_2) 2021; 1
Noor A (e_1_3_4_7_2) 2021
Chen W (e_1_3_4_15_2) 2021
e_1_3_4_9_2
Li Y. (e_1_3_4_23_2) 2002
e_1_3_4_6_2
Meng XL (e_1_3_4_5_2) 2006; 7
e_1_3_4_22_2
Sümeyye Ü (e_1_3_4_25_2) 2020
e_1_3_4_20_2
e_1_3_4_27_2
Zhang G, Xu J, Nie Y (e_1_3_4_19_2) 2008
e_1_3_4_29_2
Jing WQ (e_1_3_4_24_2) 2023; 289
Wei G. (e_1_3_4_26_2) 2011; 24
Zha L (e_1_3_4_21_2) 2019; 14
Fengyi L (e_1_3_4_11_2) 2022; 2022
Guo Y. (e_1_3_4_13_2) 2020
Zhang XX (e_1_3_4_32_2) 2020; 41
Cheng P (e_1_3_4_33_2) 2021; 22
Jin G (e_1_3_4_3_2) 2022; 5
Liu K, Zeng X, Bruniaux P (e_1_3_4_8_2) 2017
Zhou J (e_1_3_4_10_2) 2020; 90
Zhenlong H (e_1_3_4_28_2) 2018; 102
Cheng N (e_1_3_4_4_2) 2019; 56
Han J-X (e_1_3_4_34_2) 2021; 33
Zhou M. (e_1_3_4_31_2) 1999
Zhang J (e_1_3_4_30_2) 2021
Wu Z (e_1_3_4_14_2) 2010; 29
References_xml – volume: 2022
  issue: 1
  year: 2022
  ident: e_1_3_4_11_2
  article-title: 3D Garment Design Model Based on Convolution Neural Network and Virtual Reality
  publication-title: Computat Intell Neurosci
– volume: 33
  start-page: 4111
  year: 2021
  ident: e_1_3_4_34_2
  article-title: Product modeling design based on genetic algorithm and BP neural network
  publication-title: Neural Comput Applicat
  doi: 10.1007/s00521-020-05604-0
– volume: 29
  start-page: 26
  issue: 5
  year: 2010
  ident: e_1_3_4_14_2
  article-title: Subjective assessment of comfort threshold of clothing pressure on human neck based on BP neural networks
  publication-title: J Tiangong Univ
– volume-title: Research on Clothing Pressure Prediction Based on Improved BP Neural Network
  year: 2020
  ident: e_1_3_4_13_2
– volume: 1
  start-page: 2982729
  year: 2021
  ident: e_1_3_4_16_2
  article-title: Children’s clothing virtual simulation immersive design and show based on machine learning
  publication-title: Mobile Inform Syst
– volume: 24
  start-page: 672
  issue: 5
  year: 2011
  ident: e_1_3_4_26_2
  article-title: Grey relational analysis model for dynamic hybrid multiple attribute decision making
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2011.02.007
– volume: 33
  start-page: 619
  issue: 4
  year: 2021
  ident: e_1_3_4_18_2
  article-title: Research on underwear pressure prediction based on improved GA-BP algorithm
  publication-title: Int J Cloth Sci Technol
  doi: 10.1108/IJCST-05-2020-0078
– volume: 41
  start-page: 121
  issue: 8
  year: 2020
  ident: e_1_3_4_32_2
  article-title: Prediction of loom efficiency based on BP neural network and its improved algorithm
  publication-title: J Text Res
– volume: 7
  start-page: 109
  year: 2006
  ident: e_1_3_4_5_2
  article-title: Progress of study on pressure comfort of clothing
  publication-title: J Text Res
– ident: e_1_3_4_9_2
  doi: 10.1177/0040517520987520
– ident: e_1_3_4_29_2
  doi: 10.1016/j.aej.2021.08.057
– year: 2021
  ident: e_1_3_4_7_2
  article-title: A review of artificial intelligence applications in apparel industry
  publication-title: J Text Inst
– volume: 56
  start-page: 38
  issue: 3
  year: 2019
  ident: e_1_3_4_4_2
  article-title: Research method and development tendency of garment pressure comfort
  publication-title: J Silk
– year: 2021
  ident: e_1_3_4_30_2
  article-title: Optimization of backpropagation neural network under the adaptive genetic algorithm
  publication-title: Complexity
– volume: 22
  start-page: 607
  issue: 6
  year: 2021
  ident: e_1_3_4_33_2
  article-title: Research on prediction model of thermal and moisture comfort of underwear based on principal component analysis and genetic algorithm–back propagation neural network
  publication-title: J Nonlin Complex Data Sci
– year: 2020
  ident: e_1_3_4_25_2
  article-title: Optimization of coating process conditions for denim fabrics by Taguchi method and Grey relational analysis
  publication-title: J Nat Fibers
– year: 2017
  ident: e_1_3_4_8_2
  article-title: Fit evaluation of virtual garment try-on by learning from digital pressure data
  publication-title: Knowledge-Based Syst
– volume: 90
  start-page: 2564
  issue: 21
  year: 2020
  ident: e_1_3_4_10_2
  article-title: Establishing a genetic algorithm-back propagation model to predict the pressure of girdles and to determine the model function
  publication-title: Text Res J
– ident: e_1_3_4_6_2
  doi: 10.1088/1742-6596/1790/1/012043
– volume: 289
  start-page: 113069
  year: 2023
  ident: e_1_3_4_24_2
  article-title: Outdoor clothing choice for different populations in cold regions: A clothing choice prediction model based on machine learning
  publication-title: Energy Buildings
  doi: 10.1016/j.enbuild.2023.113069
– volume: 5
  start-page: 75
  year: 2022
  ident: e_1_3_4_3_2
  article-title: Main factors affecting clothing pressure comfort and measurement methods
  publication-title: Knitting Ind
– volume: 102
  start-page: 1905
  year: 2018
  ident: e_1_3_4_28_2
  article-title: The prediction model of cotton yarn intensity based on the CNN-BP neural network
  publication-title: Wireless Personal Commun
  doi: 10.1007/s11277-018-5245-0
– volume-title: Prediction of Body-Shaping Clothes’ Loading Pressure and Shaping Effect Based on GA-BP Neural Network
  year: 2022
  ident: e_1_3_4_17_2
– volume-title: Standardization Administration of the People’s Republic of China. Standard sizing systems for garments—women: GB/T 1335.2-2008
  year: 2008
  ident: e_1_3_4_19_2
– start-page: 7577
  year: 2021
  ident: e_1_3_4_15_2
  article-title: Research on influence mechanism of running clothing fatigue based on BP neural network
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-189578
– volume-title: Principles and Applications of Genetic Algorithm
  year: 1999
  ident: e_1_3_4_31_2
– ident: e_1_3_4_27_2
  doi: 10.1177/0040517519896761
– ident: e_1_3_4_20_2
  doi: 10.1177/004051756603600105
– volume: 32
  start-page: 921
  year: 2020
  ident: e_1_3_4_12_2
  article-title: Computational modelling methods for sports bra–body interactions
  publication-title: Int J Cloth Sci Technol
  doi: 10.1108/IJCST-09-2019-0143
– volume-title: Clothing Comfort and Product Development
  year: 2002
  ident: e_1_3_4_23_2
– ident: e_1_3_4_22_2
  doi: 10.1177/1558925019879290
– ident: e_1_3_4_2_2
– volume: 14
  start-page: 155892501987265
  year: 2019
  ident: e_1_3_4_21_2
  article-title: Study of an arm model for compression sleeve design and garment pressure measurement
  publication-title: J Eng Fibers Fabrics
SSID ssj0008878
Score 2.4166698
Snippet Since the dynamic and static scenarios of women’s loungewear involve multiple parts of bodies, it becomes a major factor in the assessment of comfort to...
SourceID crossref
SourceType Enrichment Source
Index Database
Title Intelligent assessment of pressure in women’s loungewear based on machine learning algorithms
WOSCitedRecordID wos001464958300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVSPB
  databaseName: SAGE HSS Package 2015
  customDbUrl:
  eissn: 1746-7748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008878
  issn: 0040-5175
  databaseCode: AEVPJ
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://journals.sagepub.com/
  providerName: SAGE Publications
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagRQIOCAqIQkE-cGIV5CR2HseqagUIVT0sdG-r-NVE2ibVZhf2yN_o3-svYezYSbRVJXrgEiWRbUWZL_PwTL5B6CMEFRmjPAqkUFFAFZEBWEEeJAVJRMg1ER1J0vf09DSbzfIzl4ppbTuBtK6zzSa_-q-ihnsgbPPr7D3E3S8KN-AchA5HEDsc_0nwX3uSTdNExvNu2spmG1ovLU2IZV7wlQ55O1mYr179NrQ-xrBJk0S4tIWWyneWuJgUi4tmWa1Kx3DufNop6HfQLRPHG1ROxo9pNwWsZptVRbNZD2A8dzvVR-W6LhtnQO2urDUL1a2B5xBxl-vxNkXETMbFFaw61UtJwMKuTcpn1WnblCbg3ndUm7d1uc0mm3lmGvhhcQjeYjgYLp-s37JnfZVh6KnMt5d4iHajlOWgBHcPj3-efetNN2jczJdZmhkuDW4ZurYXGTkyI49k-hw9c6EEPuwg8AI9UPUeeuz_NG_30NMR2eRLNB8BAw_AwI3GHhi4qrEFxs2f6xYPkMAWEripsYME9pDAAyReoR8nx9OjL4FrrxGIiKarQEZFDt5_pITh2JOCy4RqSSIds1iTghYUruNEK51wIuMkzVOe0DzUoNIlGLr4Ndqpm1q9QZhJWjAKoaciimZK84KZRmhEEC5zzsg-Iv5dzYXjnjctUBbzO2W0jz71U6464pW7B7-9z-B36MkA0AO0s1qu1Xv0SPxaVe3yg4PEX_YTdxY
linkProvider SAGE Publications
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+assessment+of+pressure+in+women%E2%80%99s+loungewear+based+on+machine+learning+algorithms&rft.jtitle=Textile+research+journal&rft.au=Tan%2C+Xiaoxuan&rft.au=Wang%2C+Chunhong&rft.au=He%2C+Yin&rft.au=Wang%2C+Wenshu&rft.date=2025-04-10&rft.issn=0040-5175&rft.eissn=1746-7748&rft_id=info:doi/10.1177%2F00405175251313521&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_00405175251313521
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5175&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5175&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5175&client=summon