OpCodeBERT: A Method for Python Code Representation Learning by BERT With Opcode
Programming language pre-training models have made significant progress in code representation learning in recent years. Although various methods, such as data flow and Abstract Syntax Tree (AST), have been widely applied to enhance code representation, there has been no research literature, up to d...
Saved in:
| Published in: | IEEE transactions on software engineering Vol. 51; no. 11; pp. 3103 - 3116 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.11.2025
IEEE Computer Society |
| Subjects: | |
| ISSN: | 0098-5589, 1939-3520 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Programming language pre-training models have made significant progress in code representation learning in recent years. Although various methods, such as data flow and Abstract Syntax Tree (AST), have been widely applied to enhance code representation, there has been no research literature, up to date, specifically exploring the use of intermediate code of the source codes for code representation. For example, the intermediate code of Python, namely opcode, not only includes the data input and output stack processes during program execution, but also describes the specific execution order and control flow information. These features are not possessed in source code, data flow, AST and other structures or are difficult to directly reflect. In this paper, we propose OpCodeBERT ( https://github.com/qcy321/OpCodeBERT ) approach, which is the first to utilize Python opcode for code representation learning and improves code representation by encoding the underlying execution logic, comments, and source code. To support the training of opcode, we filter the public datasets to exclude unparsable data and innovatively propose an opcode-to-sequence mapping method to convert them into a form suitable for model input. In addition, we pre-train OpCodeBERT using a two-stage masked language modeling (MLM) and a multi-modal contrastive learning. To evaluate the effectiveness of OpCodeBERT, we have done experiment with multiple downstream tasks. The experimental results show that OpCodeBERT performs excellently on these tasks, validating the effectiveness of incorporating opcode and further demonstrating the feasibility of this method in code representation learning. |
|---|---|
| AbstractList | Programming language pre-training models have made significant progress in code representation learning in recent years. Although various methods, such as data flow and Abstract Syntax Tree (AST), have been widely applied to enhance code representation, there has been no research literature, up to date, specifically exploring the use of intermediate code of the source codes for code representation. For example, the intermediate code of Python, namely opcode, not only includes the data input and output stack processes during program execution, but also describes the specific execution order and control flow information. These features are not possessed in source code, data flow, AST and other structures or are difficult to directly reflect. In this paper, we propose OpCodeBERT (https://github.com/qcy321/OpCodeBERT) approach, which is the first to utilize Python opcode for code representation learning and improves code representation by encoding the underlying execution logic, comments, and source code. To support the training of opcode, we filter the public datasets to exclude unparsable data and innovatively propose an opcode-to-sequence mapping method to convert them into a form suitable for model input. In addition, we pre-train OpCodeBERT using a two-stage masked language modeling (MLM) and a multi-modal contrastive learning. To evaluate the effectiveness of OpCodeBERT, we have done experiment with multiple downstream tasks. The experimental results show that OpCodeBERT performs excellently on these tasks, validating the effectiveness of incorporating opcode and further demonstrating the feasibility of this method in code representation learning. |
| Author | Qiu, Canyu Liu, Jianxun Xiao, Yong Xiao, Xiaocong |
| Author_xml | – sequence: 1 givenname: Canyu orcidid: 0009-0004-9261-1446 surname: Qiu fullname: Qiu, Canyu email: qcanyu66@gmail.com organization: School of Computer Science and Engineering, Hunan University of Science and Technology, and Hunan Provincial Key Laboratory for Services Computing and Novel Software Technology, Xiangtan, China – sequence: 2 givenname: Jianxun orcidid: 0000-0003-0722-152X surname: Liu fullname: Liu, Jianxun email: ljx529@gmail.com organization: School of Computer Science and Engineering, Hunan University of Science and Technology, and Hunan Provincial Key Laboratory for Services Computing and Novel Software Technology, Xiangtan, China – sequence: 3 givenname: Xiaocong orcidid: 0009-0003-9626-2960 surname: Xiao fullname: Xiao, Xiaocong email: xiaocongxiao1102@gmail.com organization: School of Computer Science and Engineering, Hunan University of Science and Technology, and Hunan Provincial Key Laboratory for Services Computing and Novel Software Technology, Xiangtan, China – sequence: 4 givenname: Yong orcidid: 0000-0001-8239-6149 surname: Xiao fullname: Xiao, Yong email: yongx853@gmail.com organization: School of Computer Science and Engineering, Hunan University of Science and Technology, and Hunan Provincial Key Laboratory for Services Computing and Novel Software Technology, Xiangtan, China |
| BookMark | eNpFkE1PwzAMhiMEEtvgzoFDJM4ddtI0DbcxjQ9paNMY4hj1w2GdoC1pd9i_J9MmcbJlP68tPUN2Xjc1MXaDMEYEc79-n40FCDWWCYKI4zM2QCNNJJWAczYAMGmkVGou2bDrtgCgtFYDtly006akx9lq_cAn_I36TVNy13i-3Ie25octX1HrqaO6z_oqzOaU-bqqv3i-54ck_6z6DV-0RWCv2IXLvju6PtUR-3iaracv0Xzx_DqdzKNCxLqPCoolGZWbPEsgd7lEHZeoNWZkXCFQqzKXpE3qyKU5xQLKEHQJmZigICFH7O54t_XN74663m6bna_DSyuFlggaNQYKjlThm67z5Gzrq5_M7y2CPXizwZs9eLMnbyFye4xURPSPIyZGKyH_ANBnacs |
| CODEN | IESEDJ |
| Cites_doi | 10.5555/3524938.3525087 10.18653/v1/2021.emnlp-main.685 10.1109/AICAI.2019.8701341 10.1145/3368089.3417058 10.1049/sfw2.12064 10.1007/s10462-018-09679-z 10.1108/ws.2000.07949fab.004 10.1109/CVPR.2016.434 10.18653/v1/2021.emnlp-main.552 10.1109/CVPR.2006.100 10.18653/v1/2022.naacl-main.55 10.18653/v1/2022.findings-naacl.80 10.18653/v1/2021.acl-long.442 10.48550/ARXIV.1706.03762 10.1145/3475960.3475985 10.1109/ICSE43902.2021.00041 10.1109/ICSE48619.2023.00185 10.48550/arXiv.1810.04805 10.18653/v1/2023.emnlp-main.68 10.18653/v1/2020.findings-emnlp.139 10.18653/v1/W18-5446 10.1525/9780520940420-020 10.18653/v1/2020.emnlp-main.728 10.18653/v1/N18-1202 10.1145/3597503.3608140 10.18653/v1/2022.acl-long.499 10.18653/v1/2021.naacl-main.211 |
| ContentType | Journal Article |
| Copyright | Copyright IEEE Computer Society 2025 |
| Copyright_xml | – notice: Copyright IEEE Computer Society 2025 |
| DBID | 97E RIA RIE AAYXX CITATION JQ2 K9. |
| DOI | 10.1109/TSE.2025.3610244 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) |
| DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1939-3520 |
| EndPage | 3116 |
| ExternalDocumentID | 10_1109_TSE_2025_3610244 11169752 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2020YFB1707602 funderid: 10.13039/501100012166 – fundername: Natural Science Foundation of China grantid: 61866013 funderid: 10.13039/501100001809 |
| GroupedDBID | --Z -DZ -~X .4S .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 7WY 7X7 85S 88E 88I 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 97E 9M8 AAJGR AASAJ AAWTH ABFSI ABJCF ABPPZ ABQJQ ABUWG ABVLG ACGFO ACGOD ACIWK ACNCT ADBBV AENEX AETIX AFFHD AFKRA AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS ASUFR ATWAV AZQEC BEFXN BENPR BEZIV BFFAM BGLVJ BGNUA BKEBE BKOMP BPEOZ BPHCQ BVXVI CCPQU CS3 DU5 DWQXO E.L EBS EDO EJD FRNLG FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HMCUK HZ~ H~9 I-F IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI ITG ITH JAVBF K60 K6V K6~ K7- L6V LAI M0C M1P M1Q M2O M2P M43 M7S MS~ O9- OCL OHT P2P P62 PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PROAC PSQYO PTHSS Q2X RIA RIE RNI RNS RXW RZB S10 TAE TN5 TWZ UHB UKHRP UPT UQL VH1 WH7 XOL YYP YZZ ZCG AAYXX CITATION ABAZT JQ2 K9. |
| ID | FETCH-LOGICAL-c247t-ce43e95b9ba60bfb3174d1771ae9fc2175db3e798fef8be420dc24f6e94e0ce23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001618768900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-5589 |
| IngestDate | Thu Nov 20 16:01:32 EST 2025 Thu Nov 27 00:45:45 EST 2025 Wed Nov 26 07:27:09 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-ce43e95b9ba60bfb3174d1771ae9fc2175db3e798fef8be420dc24f6e94e0ce23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8239-6149 0000-0003-0722-152X 0009-0004-9261-1446 0009-0003-9626-2960 |
| PQID | 3273107171 |
| PQPubID | 21418 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_3273107171 crossref_primary_10_1109_TSE_2025_3610244 ieee_primary_11169752 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on software engineering |
| PublicationTitleAbbrev | TSE |
| PublicationYear | 2025 |
| Publisher | IEEE IEEE Computer Society |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society |
| References | ref13 ref12 ref15 ref14 Tay (ref32) 2023 ref10 ref18 Zhang (ref8) 2024 Husain (ref17) 2019 ref45 Guo (ref11) 2021 ref42 ref41 ref44 Wang (ref40) 2022 ref7 ref9 Srivastava (ref37) 2014; 15 ref3 Liu (ref47) 2019 ref6 Raffel (ref22) 2020; 21 ref35 ref34 ref36 Maaten (ref51) 2008; 9 ref31 ref33 Puri (ref46) 2021 Zhu (ref21) 2024 Neelakantan (ref39) 2022 Lachaux (ref49) 2020 ref1 ref38 Clark (ref19) 2020 ref24 ref23 ref26 Wang (ref50) 2020 Lachaux (ref30) 2021; 34 Karampatsis (ref5) 2020 ref28 Jiang (ref20) 2021 ref27 ref29 Lu (ref43) 2021 Kanade (ref4) 2020 Wang (ref16) 2021 Radford (ref2) 2019 Wang (ref25) 2019 Kocetkov (ref48) 2022 |
| References_xml | – start-page: 5110 volume-title: Proc. Int. Conf. Mach. Learn. (ICML) year: 2020 ident: ref4 article-title: Learning and evaluating contextual embedding of source code – ident: ref35 doi: 10.5555/3524938.3525087 – ident: ref29 doi: 10.18653/v1/2021.emnlp-main.685 – ident: ref12 doi: 10.1109/AICAI.2019.8701341 – year: 2019 ident: ref2 article-title: Language models are unsupervised multitask learners publication-title: OpenAI Blog – ident: ref7 doi: 10.1145/3368089.3417058 – year: 2022 ident: ref39 article-title: Text and code embeddings by contrastive pre-training – year: 2019 ident: ref47 article-title: RoBERTa: A robustly optimized BERT pretraining approach – start-page: 47427 volume-title: Proc. Int. Conf. Learn. Representations (ICLR) year: 2024 ident: ref8 article-title: Code representation learning at scale – year: 2021 ident: ref16 article-title: SynCoBERT: Syntax-guided multi-modal contrastive pre-training for code representation – ident: ref14 doi: 10.1049/sfw2.12064 – ident: ref13 doi: 10.1007/s10462-018-09679-z – start-page: 3261 volume-title: Proc. Conf. Neural Inf. Process. Syst. (NeurIPS) year: 2019 ident: ref25 article-title: SuperGLUE: A stickier benchmark for general-purpose language understanding systems – ident: ref18 doi: 10.1108/ws.2000.07949fab.004 – volume: 34 start-page: 14967 volume-title: Proc. Conf. Neural Inf. Process. Syst. (NeurIPS) year: 2021 ident: ref30 article-title: DOBF: A deobfuscation pre-training objective for programming languages – ident: ref34 doi: 10.1109/CVPR.2016.434 – ident: ref36 doi: 10.18653/v1/2021.emnlp-main.552 – ident: ref33 doi: 10.1109/CVPR.2006.100 – ident: ref38 doi: 10.18653/v1/2022.naacl-main.55 – ident: ref41 doi: 10.18653/v1/2022.findings-naacl.80 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: ref37 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref44 doi: 10.18653/v1/2021.acl-long.442 – volume: 9 start-page: 2579 issue: 86 year: 2008 ident: ref51 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. (JMLR) – start-page: 54 volume-title: Proc. Uncertainty Artif. Intell. (UAI) year: 2021 ident: ref20 article-title: TreeBERT: A tree-based pre-trained model for programming language – ident: ref15 doi: 10.48550/ARXIV.1706.03762 – start-page: 1 volume-title: Proc. IEEE/ACM 46th Int. Conf. Softw. Eng. (ICSE) year: 2024 ident: ref21 article-title: GrammarT5: Grammar-integrated pretrained encoder-decoder neural model for code – ident: ref45 doi: 10.1145/3475960.3475985 – ident: ref27 doi: 10.1109/ICSE43902.2021.00041 – year: 2022 ident: ref48 article-title: The stack: 3 TB of permissively licensed source code – start-page: 3295 volume-title: Proc. Int. Conf. Learn. Representations (ICLR) year: 2020 ident: ref19 article-title: ELECTRA: Pre-training text encoders as discriminators rather than generators – volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. (NeurIPS) year: 2020 ident: ref49 article-title: Unsupervised translation of programming languages – ident: ref42 doi: 10.1109/ICSE48619.2023.00185 – ident: ref3 doi: 10.48550/arXiv.1810.04805 – ident: ref31 doi: 10.18653/v1/2023.emnlp-main.68 – ident: ref6 doi: 10.18653/v1/2020.findings-emnlp.139 – volume-title: Proc. Neural Inf. Process. Syst. Track Datasets Benchmarks 1 (NeurIPS Datasets Benchmarks) year: 2021 ident: ref43 article-title: CodeXGLUE: A machine learning benchmark dataset for code understanding and generation – volume: 21 start-page: 1 issue: 140 year: 2020 ident: ref22 article-title: Exploring the limits of transfer learning with a unified text-to-text transformer publication-title: J. Mach. Learn. Res. – ident: ref24 doi: 10.18653/v1/W18-5446 – ident: ref23 doi: 10.1525/9780520940420-020 – start-page: 17456 volume-title: Proc. Int. Conf. Learn. Representations (ICLR) year: 2021 ident: ref11 article-title: GraphCodeBERT: Pre-training code representations with data flow – year: 2020 ident: ref5 article-title: SCELMo: Source code embeddings from language models – start-page: 36221 volume-title: Proc. Int. Conf. Learn. Representations (ICLR) year: 2023 ident: ref32 article-title: UL2: Unifying language learning paradigms – year: 2022 ident: ref40 article-title: Text embeddings by weakly-supervised contrastive pre-training – ident: ref26 doi: 10.18653/v1/2020.emnlp-main.728 – ident: ref1 doi: 10.18653/v1/N18-1202 – year: 2019 ident: ref17 article-title: CodeSearchNet challenge: Evaluating the state of semantic code search – ident: ref9 doi: 10.1145/3597503.3608140 – volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. (NeurIPS) year: 2021 ident: ref46 article-title: CodeNet: A large-scale ai for code dataset for learning a diversity of coding tasks – start-page: 9929 volume-title: Proc. Int. Conf. Mach. Learn. (ICML) year: 2020 ident: ref50 article-title: Understanding contrastive representation learning through alignment and uniformity on the hypersphere – ident: ref10 doi: 10.18653/v1/2022.acl-long.499 – ident: ref28 doi: 10.18653/v1/2021.naacl-main.211 |
| SSID | ssj0005775 ssib053395008 |
| Score | 2.478489 |
| Snippet | Programming language pre-training models have made significant progress in code representation learning in recent years. Although various methods, such as data... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 3103 |
| SubjectTerms | Biological system modeling Codes contrastive learning Data models Effectiveness Learning Logic MLM Programming languages Python Python opcode Representation learning Representations Semantics Source code Source coding Syntactics Training underlying execution logic |
| Title | OpCodeBERT: A Method for Python Code Representation Learning by BERT With Opcode |
| URI | https://ieeexplore.ieee.org/document/11169752 https://www.proquest.com/docview/3273107171 |
| Volume | 51 |
| WOSCitedRecordID | wos001618768900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-3520 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005775 issn: 0098-5589 databaseCode: RIE dateStart: 19750101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4o8eBFfGBE0ezBi4dCX9vtekMC8SIQxMitYbtT5VIIFBP-vbPbbYgxHrw1aWfTzOzMfLM7D0LuueSxOV5C28-ckM2ZIyBFIBf5cz9SCiF_OWyCD4fxbCbGtljd1MIAgEk-g7Z-NHf5aplu9VFZB_UyEpyhxT3kPCqLtfb5HJyzqkEmY7Go7iRd0Zm-9jES9Fk7QLCA_uyHDzJDVX5ZYuNeBvV__tgpObE4knZLwZ-RA8jPSb2a0UCtyl6Q8WjVWyp46k-mj7RLX8zAaIpIlY53um0A1W_pxOTD2jKknNqmqx9U7qimpO-L4pOOVrr-vUHeBv1p79mxUxSc1A954aQQBiCYFHIeuTKTCBhC5XHuzUFkKUYkTMkAuIgzyGIJoe8qJMwiECG4KfjBJanlyxyuCI1BSQ8xm4BQoIHNRMwyV0ngKsbFw6xJHiq-JquyWUZiggxXJCiDRMsgsTJokobm4_47y8ImaVWSSKw6bZIAQZanI0_v-g-yG3KsVy-rBFukVqy3cEuO0q9isVnfmZ3yDVZFuiM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QQIILzyHGMwcuHAp9JE3DbaBNQ-ylMcRu1dK4sMs2bQOJf4-TpkIIceBWqXVb2bH9OfGDkEuhRGK3l9D2c4_xMfckZAjk4nAcxloj5C-GTYhuNxmNZN8Vq9taGACwyWdwbS7tWb6eZe9mq-wG9TKWgqPFXeeMhX5RrvWd0SEEL1tkcp7I8lTSlzfDpwbGgiG_jhAuoEf74YXsWJVfttg6mObOP39tl2w7JEnrhej3yBpM98lOOaWBOqU9IP3e_H6m4a4xGN7SOu3YkdEUsSrtf5rGAdTcpQObEesKkabUtV19peqTGkr6Mlm90d7cVMBXyXOzMbxveW6OgpeFTKy8DFgEkiupxrGvcoWQgelAiGAMMs8wJuFaRSBkkkOeKEDGaiTMY5AM_AzC6JBUprMpHBGagFYBojYJTKKJzWXCc18rEDrBl7O8Rq5Kvqbzol1GasMMX6Yog9TIIHUyqJGq4eP3c46FNXJaSiJ1CrVMI4RZgYk9g-M_yC7IZmvYaafth-7jCdkyXypqBk9JZbV4hzOykX2sJsvFuV01XzKzvWo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OpCodeBERT%3A+A+Method+for+Python+Code+Representation+Learning+by+BERT+With+Opcode&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Qiu%2C+Canyu&rft.au=Liu%2C+Jianxun&rft.au=Xiao%2C+Xiaocong&rft.au=Xiao%2C+Yong&rft.date=2025-11-01&rft.pub=IEEE+Computer+Society&rft.issn=0098-5589&rft.eissn=1939-3520&rft.volume=51&rft.issue=11&rft.spage=3103&rft.epage=3116&rft_id=info:doi/10.1109%2FTSE.2025.3610244&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon |