GF-LRP: A Method for Explaining Predictions Made by Variational Graph Auto-Encoders
Variational graph autoencoders (VGAEs) combine the best of graph convolutional networks (GCNs) and variational inference and have been used to address various tasks such as node classification or link prediction. However, the lack of explainability is a limiting factor when trustworthy decisions are...
Uloženo v:
| Vydáno v: | IEEE transactions on emerging topics in computational intelligence Ročník 9; číslo 1; s. 281 - 291 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2471-285X, 2471-285X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!