GF-LRP: A Method for Explaining Predictions Made by Variational Graph Auto-Encoders

Variational graph autoencoders (VGAEs) combine the best of graph convolutional networks (GCNs) and variational inference and have been used to address various tasks such as node classification or link prediction. However, the lack of explainability is a limiting factor when trustworthy decisions are...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on emerging topics in computational intelligence Ročník 9; číslo 1; s. 281 - 291
Hlavní autoři: Rodrigo-Bonet, Esther, Deligiannis, Nikos
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2471-285X, 2471-285X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Variational graph autoencoders (VGAEs) combine the best of graph convolutional networks (GCNs) and variational inference and have been used to address various tasks such as node classification or link prediction. However, the lack of explainability is a limiting factor when trustworthy decisions are required. In this paper, we present a novel post-hoc explainability framework for VGAEs that considers their encoder-decoder architecture. Specifically, we propose a layer-wise-relevance-propagation-based (LRP-based) explanation technique coined GF-LRP which, to our knowledge, is the first explanation method for VGAEs. GF-LRP goes beyond existing LRP techniques for GCNs by taking into account, in addition to input features and the graph structure of the data, the VGAE branch-specific architecture. The explanations are branch-specific in the sense that we explain the mean and standard deviation branches of the Gaussian distribution learned by the model. For a node's prediction, GF-LRP infers the most relevant features, nodes and its edges. To prove the effectiveness of our explanation method, we compute fidelity, sparsity and contrastivity as well as commonly employed evaluation metrics. Extensive experiments and visualizations on two real-world datasets demonstrate the effectiveness of the proposed explanation method.
AbstractList Variational graph autoencoders (VGAEs) combine the best of graph convolutional networks (GCNs) and variational inference and have been used to address various tasks such as node classification or link prediction. However, the lack of explainability is a limiting factor when trustworthy decisions are required. In this paper, we present a novel post-hoc explainability framework for VGAEs that considers their encoder-decoder architecture. Specifically, we propose a layer-wise-relevance-propagation-based (LRP-based) explanation technique coined GF-LRP which, to our knowledge, is the first explanation method for VGAEs. GF-LRP goes beyond existing LRP techniques for GCNs by taking into account, in addition to input features and the graph structure of the data, the VGAE branch-specific architecture. The explanations are branch-specific in the sense that we explain the mean and standard deviation branches of the Gaussian distribution learned by the model. For a node's prediction, GF-LRP infers the most relevant features, nodes and its edges. To prove the effectiveness of our explanation method, we compute fidelity, sparsity and contrastivity as well as commonly employed evaluation metrics. Extensive experiments and visualizations on two real-world datasets demonstrate the effectiveness of the proposed explanation method.
Author Deligiannis, Nikos
Rodrigo-Bonet, Esther
Author_xml – sequence: 1
  givenname: Esther
  orcidid: 0000-0003-4129-3295
  surname: Rodrigo-Bonet
  fullname: Rodrigo-Bonet, Esther
  email: erodrigo@etrovub.be
  organization: Department of Electronics and Informatics, Vrije Universiteit Brussel, Brussels, Belgium
– sequence: 2
  givenname: Nikos
  orcidid: 0000-0001-9300-5860
  surname: Deligiannis
  fullname: Deligiannis, Nikos
  email: ndeligia@etrovub.be
  organization: Department of Electronics and Informatics, Vrije Universiteit Brussel, Brussels, Belgium
BookMark eNpNkE9PAjEQxRuDiYh8AeOhiefFttvZP94IASSBSBSNt6bbnZUluF3bJYFv7yIcmMtMJu-9vPxuSaeyFRJyz9mAc5Y-rcar0WwgmJCDUPI05vKKdIWMeSAS-Opc3Dek7_2GMSZS4CHILnmfToL52_KZDukCm7XNaWEdHe_rrS6rsvqmS4d5aZrSVp4udI40O9BP7Up9fOktnTpdr-lw19hgXBmbo_N35LrQW4_98-6Rj0lb8SWYv05no-E8MG2hJjAGCgghRp2mGnMQmYyTKIeo0DKBImqHZVyDSFguTKozyVCCziApMOSShz3yeMqtnf3doW_Uxu5cW8qrkEMKLOSJbFXipDLOeu-wULUrf7Q7KM7UkZ_656eO_NSZX2t6OJlKRLwwQBLFbe4f6jdsUg
CODEN ITETCU
Cites_doi 10.1371/journal.pone.0181142
10.18653/v1/2021.naacl-main.333
10.1109/TNN.2008.2005605
10.1109/ACCESS.2020.3018033
10.1016/j.patcog.2023.109874
10.1109/TPAMI.2022.3204236
10.1007/978-3-319-10590-1_53
10.1109/ICASSP.2019.8683787
10.5555/2969033.2969125
10.1109/CNS.2019.8802833
10.1038/nature14539
10.1371/journal.pone.0130140
10.1109/JIOT.2020.2999446
10.1109/TPAMI.2021.3116668
10.1109/CVPR.2019.01103
10.1109/TKDE.2022.3187455
10.1007/978-3-030-28954-6_10
10.1109/TPAMI.2021.3115452
10.1145/3359786
10.18653/v1/W17-5221
10.1007/978-3-030-28954-6_16
10.1109/TSIPN.2022.3180679
10.1145/3236009
10.1145/3331184.3331267
10.1613/jair.1.12228
10.1007/978-3-030-57321-8_4
10.1109/tnnls.2024.3370918
10.1561/2200000056
10.18653/v1/N16-3020
10.1016/S0304-3800(02)00257-0
10.1186/s13059-023-02850-y
10.1117/12.2511964
10.1109/CVPR42600.2020.00867
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TETCI.2024.3419714
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Architecture
EISSN 2471-285X
EndPage 291
ExternalDocumentID 10_1109_TETCI_2024_3419714
10586750
Genre orig-research
GrantInformation_xml – fundername: Interuniversitair Micro-Electronica Centrum VZW; IMEC
  funderid: 10.13039/100020844
– fundername: Ph.D. Fellowship Strategic Basic Research
  grantid: 1SC4521N
– fundername: Vlaamse regering; Flemish Government
  funderid: 10.13039/501100011878
– fundername: Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen" Programme
– fundername: Research Foundation - Flanders
– fundername: AAA Project
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
ABAZT
L7M
ID FETCH-LOGICAL-c247t-cc5f5357ea99aed52b4786d56fa485f66660b1a5280d2c9ab40e45ab58fe31413
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001263417500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2471-285X
IngestDate Mon Jun 30 12:58:08 EDT 2025
Sat Nov 29 05:12:11 EST 2025
Wed Dec 10 09:49:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-cc5f5357ea99aed52b4786d56fa485f66660b1a5280d2c9ab40e45ab58fe31413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4129-3295
0000-0001-9300-5860
PQID 3159503184
PQPubID 4437216
PageCount 11
ParticipantIDs proquest_journals_3159503184
crossref_primary_10_1109_TETCI_2024_3419714
ieee_primary_10586750
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref15
Springenberg (ref35) 2015
ref14
ref36
ref31
Ying (ref21) 2019
ref30
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
Baldassarre (ref24) 2019
Kipf (ref28) 2017
ref38
ref19
ref18
Shrikumar (ref37) 2017
Luo (ref20) 2020
Kipf (ref26) 2016
ref23
ref45
ref25
ref42
ref41
ref22
ref44
ref43
ref27
ref29
Gautam (ref5) 2022
ref8
ref7
ref9
ref4
ref3
Adel (ref6) 2018
Draizen (ref11) 2022
ref40
Han (ref12) 2022
References_xml – ident: ref15
  doi: 10.1371/journal.pone.0181142
– ident: ref30
  doi: 10.18653/v1/2021.naacl-main.333
– ident: ref27
  doi: 10.1109/TNN.2008.2005605
– ident: ref29
  doi: 10.1109/ACCESS.2020.3018033
– ident: ref41
  doi: 10.1016/j.patcog.2023.109874
– ident: ref19
  doi: 10.1109/TPAMI.2022.3204236
– ident: ref38
  doi: 10.1007/978-3-319-10590-1_53
– ident: ref43
  doi: 10.1109/ICASSP.2019.8683787
– ident: ref2
  doi: 10.5555/2969033.2969125
– ident: ref39
  doi: 10.5555/2969033.2969125
– ident: ref4
  doi: 10.1109/CNS.2019.8802833
– volume-title: Proc. Int. Conf. Learn. Representations Workshop Track
  year: 2015
  ident: ref35
  article-title: Striving for simplicity: The all convolutional net
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2017
  ident: ref28
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref1
  doi: 10.1038/nature14539
– ident: ref14
  doi: 10.1371/journal.pone.0130140
– ident: ref31
  doi: 10.1109/JIOT.2020.2999446
– ident: ref42
  doi: 10.1109/TPAMI.2021.3116668
– start-page: 17940
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  year: 2022
  ident: ref5
  article-title: ProtoVAE: A trustworthy self-explainable prototypical variational model
– start-page: 19620
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  year: 2020
  ident: ref20
  article-title: Parameterized explainer for graph neural network
– ident: ref23
  doi: 10.1109/CVPR.2019.01103
– ident: ref22
  doi: 10.1109/TKDE.2022.3187455
– ident: ref10
  doi: 10.1007/978-3-030-28954-6_10
– ident: ref18
  doi: 10.1109/TPAMI.2021.3115452
– volume-title: Proc. ICML Workshop Learn. Reasoning Graph-Structured Representations
  year: 2019
  ident: ref24
  article-title: Explainability techniques for graph convolutional networks
– start-page: 32
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  year: 2019
  ident: ref21
  article-title: GNNExplainer: Generating explanations for graph neural networks
– ident: ref8
  doi: 10.1145/3359786
– ident: ref16
  doi: 10.18653/v1/W17-5221
– ident: ref17
  doi: 10.1007/978-3-030-28954-6_16
– start-page: 5256
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  year: 2022
  ident: ref12
  article-title: Which explanation should I choose? A function approximation perspective to characterizing post hoc explanations
– ident: ref45
  doi: 10.1109/TSIPN.2022.3180679
– ident: ref32
  doi: 10.1145/3236009
– ident: ref44
  doi: 10.1145/3331184.3331267
– ident: ref25
  doi: 10.1613/jair.1.12228
– ident: ref34
  doi: 10.1007/978-3-030-57321-8_4
– ident: ref40
  doi: 10.1109/tnnls.2024.3370918
– year: 2022
  ident: ref11
  article-title: Explainable deep generative models, ancestral fragments, and murky regions of the protein structure universe
  publication-title: bioRxiv
– ident: ref3
  doi: 10.1561/2200000056
– volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  year: 2016
  ident: ref26
  article-title: Variational graph auto-encoders
– start-page: 50
  volume-title: Proc. 35th Int. Conf. Mach. Learn.
  year: 2018
  ident: ref6
  article-title: Discovering interpretable representations for both deep generative and discriminative models
– ident: ref33
  doi: 10.18653/v1/N16-3020
– start-page: 3145
  volume-title: Proc. Int. Conf. Learn. Representations
  year: 2017
  ident: ref37
  article-title: Learning important features through propagating activation differences
– ident: ref36
  doi: 10.1016/S0304-3800(02)00257-0
– ident: ref7
  doi: 10.1186/s13059-023-02850-y
– ident: ref9
  doi: 10.1117/12.2511964
– ident: ref13
  doi: 10.1109/CVPR42600.2020.00867
SSID ssj0002951354
Score 2.295312
Snippet Variational graph autoencoders (VGAEs) combine the best of graph convolutional networks (GCNs) and variational inference and have been used to address various...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 281
SubjectTerms Architecture
Artificial neural networks
Autoencoders
Computational modeling
Data models
Deep learning
Effectiveness
Encoders-Decoders
Explainable deep learning
geometric deep learning
Graph convolutional networks
graph convolutional neural networks
Graph neural networks
Graph theory
layer-wise relevance propagation
Network analysis
Normal distribution
post-hoc explanations
Predictive models
variational autoencoders
Title GF-LRP: A Method for Explaining Predictions Made by Variational Graph Auto-Encoders
URI https://ieeexplore.ieee.org/document/10586750
https://www.proquest.com/docview/3159503184
Volume 9
WOSCitedRecordID wos001263417500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60eBDBZ8VqlT14k63pZjebeAvSVsGWolV6C_sKeEklTQX_vbObVAriwVsOCWxmdna-mZ2ZD6Hr3AhqOOUkV8wQFltGFLeG9JVmVGsNCJV5sgkxmcTzeTJtmtV9L4y11hef2Z579Hf5ZqFXLlUGFs5jALgQoW8LEdXNWj8JFQpYIeRs3RgTJLezwez-EUJAynpuapnv1NlwPp5N5dcR7P3K8OCfKzpE-w2AxGmt8SO0ZYtjtJdu3AecoJfRkDw9T-9wiseeIRoDNMWu3K7mg8DT0t3P-C2Hx9JYrL7wG0TNTWYQj9wYa5yuqgUZFK7rvVy20esQ_vSBNOwJRFMmKgJyznnIhZVJIi3oQzERR4ZHuWQxzyFsiQLVl5zGgaE6kYoFlnGpeJzbsA--7RS1ikVhzxAWmgptAC0kbj5gX0gGdk-NSZh2xamyg27WYs0-6iEZmQ8ugiTzSsicErJGCR3UdoLceLOWYQd116rIGkNaZiHALe4OHnb-x2cXaJc6Tl5fSd1Frapc2Uu0oz-r92V55ffINzONuZg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kCorgs2K16h68ydZkM9sk3oL0hW0pWqW3sK-Al1bSVPDfu7tJpSAevOWQwGZmZ-eb2Zn5ELrNVEgVo4xkAhSBSAMRTCviCwlUSmkQKjiyiXA8jmazeFI1q7teGK21Kz7TLfvo7vLVQq5sqsxYOIsMwDUR-jYDoF7ZrvWTUqEGLQQM1q0xXnw_7UwfByYIpNCyc8tcr86G-3F8Kr8OYedZuof_XNMROqggJE5KnR-jLT0_QfvJxo3AKXrpdcnwefKAEzxyHNHYgFNsC-5KRgg8ye0Njdt0eMSVxuILv5m4ucoN4p4dZI2TVbEgnbnte8-XdfTaNX_aJxV_ApEUwoIYSWcsYKHmccy10YiAMGor1s44RCwzgUvbEz5nNPIUlTEX4GlgXLAo04FvvNsZqs0Xc32OcChpKJXBC7GdEOiHHIzlU6VikLY8lTfQ3Vqs6Uc5JiN14YUXp04JqVVCWimhgepWkBtvljJsoOZaFWllSss0MICL2aMHLv747Abt9qejYTocjJ8u0R61DL2urrqJakW-0ldoR34W78v82u2XbwopvN8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GF-LRP%3A+A+Method+for+Explaining+Predictions+Made+by+Variational+Graph+Auto-Encoders&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Rodrigo-Bonet%2C+Esther&rft.au=Deligiannis%2C+Nikos&rft.date=2025-02-01&rft.issn=2471-285X&rft.eissn=2471-285X&rft.volume=9&rft.issue=1&rft.spage=281&rft.epage=291&rft_id=info:doi/10.1109%2FTETCI.2024.3419714&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TETCI_2024_3419714
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon