One-Shot Real-to-Sim via End-to-End Differentiable Simulation and Rendering

Identifying predictive world models for robots from sparse online observations is essential for robot task planning and execution in novel environments. However, existing methods that leverage differentiable programming to identify world models are incapable of jointly optimizing the geometry, appea...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 10; no. 6; pp. 6320 - 6327
Main Authors: Zhu, Yifan, Xiang, Tianyi, Dollar, Aaron M., Pan, Zherong
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Identifying predictive world models for robots from sparse online observations is essential for robot task planning and execution in novel environments. However, existing methods that leverage differentiable programming to identify world models are incapable of jointly optimizing the geometry, appearance, and physical properties of the scene. In this work, we introduce a novel rigid object representation that allows the joint identification of these properties. Our method employs a novel differentiable point-based geometry representation coupled with a grid-based appearance field, which allows differentiable object collision detection and rendering. Combined with a differentiable physical simulator, we achieve end-to-end optimization of world models or rigid objects, given the sparse visual and tactile observations of a physical motion sequence. Through a series of world model identification tasks in simulated and real environments, we show that our method can learn both simulation- and rendering-ready rigid world models from only one robot action sequence.
AbstractList Identifying predictive world models for robots from sparse online observations is essential for robot task planning and execution in novel environments. However, existing methods that leverage differentiable programming to identify world models are incapable of jointly optimizing the geometry, appearance, and physical properties of the scene. In this work, we introduce a novel rigid object representation that allows the joint identification of these properties. Our method employs a novel differentiable point-based geometry representation coupled with a grid-based appearance field, which allows differentiable object collision detection and rendering. Combined with a differentiable physical simulator, we achieve end-to-end optimization of world models or rigid objects, given the sparse visual and tactile observations of a physical motion sequence. Through a series of world model identification tasks in simulated and real environments, we show that our method can learn both simulation- and rendering-ready rigid world models from only one robot action sequence.
Author Xiang, Tianyi
Pan, Zherong
Zhu, Yifan
Dollar, Aaron M.
Author_xml – sequence: 1
  givenname: Yifan
  orcidid: 0000-0002-4587-4305
  surname: Zhu
  fullname: Zhu, Yifan
  email: yifan.zhu@yale.edu
  organization: Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA
– sequence: 2
  givenname: Tianyi
  surname: Xiang
  fullname: Xiang, Tianyi
  email: tianyi.xiang@yale.edu
  organization: Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA
– sequence: 3
  givenname: Aaron M.
  orcidid: 0000-0002-2409-4668
  surname: Dollar
  fullname: Dollar, Aaron M.
  email: aaron.dollar@yale.edu
  organization: Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA
– sequence: 4
  givenname: Zherong
  orcidid: 0000-0001-9348-526X
  surname: Pan
  fullname: Pan, Zherong
  email: zherong.pan.usa@gmail.com
  organization: LightSpeed Studios, Seattle, WA, USA
BookMark eNpNkM1PAjEQxRuDiYjcPXjYxPNiP3bb7ZEgqJGEBPTcdLtTLVla7C4m_veWwIHTm8n83szk3aKBDx4Quid4QgiWT8v1dEIxLSes5JxTdoWGlAmRM8H54KK-QeOu22KMSUkFk-UQva885Jvv0Gdr0G3eh3zjdtmv09ncN8c2SfbsrIUIvne6biFLxKHVvQs-02m6Bt9AdP7rDl1b3XYwPusIfS7mH7PXfLl6eZtNl7mhhehzI2va6JrXTV2JQjKDAURJrBRAmNbUAEDV1KAJFNhUDZZVZTgnzBTC2MayEXo87d3H8HOArlfbcIg-nVSMYiZFWZEiUfhEmRi6LoJV--h2Ov4pgtUxNZVSU8fU1Dm1ZHk4WVx64QKXFSWYsn9yGGn1
CODEN IRALC6
Cites_doi 10.1145/3592433
10.1002/(SICI)1097-0207(19960815)39:15<2673::AID-NME972>3.0.CO;2-I
10.1109/CVPR52733.2024.00420
10.1109/LRA.2021.3062323
10.1145/3414685.3417766
10.1016/0005-1098(71)90059-8
10.15607/RSS.2021.XVII.008
10.15607/RSS.2020.XVI.099
10.1109/robot.2003.1242171
10.1145/3414685.3417861
10.15607/RSS.2021.XVII.034
10.1145/3528223.3530155
10.1145/3503250
10.1109/ICRA.2015.7139807
10.1023/A:1008292328909
10.1109/3DV53792.2021.00020
10.1109/CVPR42600.2020.00011
10.1109/ICCV.2019.00780
10.1109/CVPR.2018.00308
10.1109/CVPR42600.2020.00749
10.1109/MRA.2015.2448951
10.1145/882262.882358
10.1109/CVPR42600.2020.00030
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2025.3566623
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 6327
ExternalDocumentID 10_1109_LRA_2025_3566623
10982102
Genre orig-research
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c247t-c9b2dab6bdb87493c0ee751f97e13aa2ceee8dbea1e40c8d0988c6613c47cfdf3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001501968400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sat Nov 22 13:41:14 EST 2025
Thu Nov 27 01:01:19 EST 2025
Wed Nov 26 07:22:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-c9b2dab6bdb87493c0ee751f97e13aa2ceee8dbea1e40c8d0988c6613c47cfdf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2409-4668
0000-0002-4587-4305
0000-0001-9348-526X
PQID 3203975814
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_primary_10_1109_LRA_2025_3566623
ieee_primary_10982102
proquest_journals_3203975814
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
Tochilkin (ref35) 2024
ref30
ref33
Zhou (ref36) 2018
ref10
ref32
Peng (ref11) 2021; 34
Qiao (ref16) 2021
ref38
Yang (ref4) 2024
Ha (ref1) 2018; 31
ref18
strm (ref24) 1971; 7
Hong (ref34) 2024
Kazhdan (ref26) 2006; 7
Howell (ref17) 2022
ref23
Coumans (ref37) 2016
ref20
Bruce (ref2) 2024
ref22
Zhu (ref3) 2024
ref28
ref27
ref8
ref7
ref9
Ravi (ref29) 2020
Abou-Chakra (ref25) 2024
Macklin (ref39) 2024; 43
ref6
ref5
ref40
Achlioptas (ref19) 2018
Pfrommer (ref21) 2021
References_xml – ident: ref9
  doi: 10.1145/3592433
– ident: ref33
  doi: 10.1002/(SICI)1097-0207(19960815)39:15<2673::AID-NME972>3.0.CO;2-I
– ident: ref23
  doi: 10.1109/CVPR52733.2024.00420
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2024
  ident: ref4
  article-title: Learning interactive real-world simulators
– start-page: 40
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2018
  ident: ref19
  article-title: Learning representations and generative models for 3D point clouds
– year: 2022
  ident: ref17
  article-title: Dojo: A differentiable physics engine for robotics
– volume-title: Proc. 8th Annu. Conf. Robot Learn.
  year: 2024
  ident: ref25
  article-title: Physically embodied Gaussian splatting: A visually learnt and physically grounded 3D representation for robotics
– year: 2016
  ident: ref37
  article-title: Pybullet, a python module for physics simulation for games, robotics and machine learning
– ident: ref6
  doi: 10.1109/LRA.2021.3062323
– ident: ref18
  doi: 10.1145/3414685.3417766
– volume: 7
  start-page: 123
  issue: 2
  year: 1971
  ident: ref24
  article-title: System identificationa survey
  publication-title: Automatica
  doi: 10.1016/0005-1098(71)90059-8
– ident: ref15
  doi: 10.15607/RSS.2021.XVII.008
– start-page: 2279
  volume-title: Proc. Conf. Robot Learn.
  year: 2021
  ident: ref21
  article-title: ContactNets: Learning discontinuous contact dynamics with smooth, implicit representations
– ident: ref5
  doi: 10.15607/RSS.2020.XVI.099
– ident: ref32
  doi: 10.1109/robot.2003.1242171
– volume: 34
  start-page: 13032
  year: 2021
  ident: ref11
  article-title: Shape as points: A differentiable Poisson solver
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref28
  doi: 10.1145/3414685.3417861
– ident: ref14
  doi: 10.15607/RSS.2021.XVII.034
– ident: ref22
  doi: 10.1145/3528223.3530155
– volume: 31
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2018
  ident: ref1
  article-title: Recurrent world models facilitate policy evolution
– ident: ref8
  doi: 10.1145/3503250
– start-page: 17123
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2021
  ident: ref16
  article-title: Differentiable simulation of soft multi-body systems
– year: 2018
  ident: ref36
  article-title: Open3D: A modern library for 3D data processing
– ident: ref10
  doi: 10.1109/ICRA.2015.7139807
– ident: ref31
  doi: 10.1023/A:1008292328909
– ident: ref13
  doi: 10.1109/3DV53792.2021.00020
– ident: ref20
  doi: 10.1109/CVPR42600.2020.00011
– ident: ref27
  doi: 10.1109/ICCV.2019.00780
– year: 2020
  ident: ref29
  article-title: Accelerating 3D deep learning with PyTorch3D
– year: 2024
  ident: ref2
  article-title: Genie: Generative Interactive Environments
– ident: ref12
  doi: 10.1109/CVPR.2018.00308
– ident: ref30
  doi: 10.1109/CVPR42600.2020.00749
– ident: ref38
  doi: 10.1109/MRA.2015.2448951
– year: 2024
  ident: ref35
  article-title: TripoSR: Fast 3D object reconstruction from a single image
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2024
  ident: ref34
  article-title: LRM: Large reconstruction model for single image to 3D
– volume: 43
  issue: 1
  volume-title: Proc. ACM Trans. Graph.
  year: 2024
  ident: ref39
  article-title: Warp: Diff erentiable spatial computing for python
– year: 2024
  ident: ref3
  article-title: IRASim: Learning interactive real-robot action simulators
– ident: ref40
  doi: 10.1145/882262.882358
– ident: ref7
  doi: 10.1109/CVPR42600.2020.00030
– volume: 7
  start-page: 61
  issue: 4
  volume-title: Proc. 4th Eurograph. Symp. Geometry Process.
  year: 2006
  ident: ref26
  article-title: Poisson surface reconstruction
SSID ssj0001527395
Score 2.2930155
Snippet Identifying predictive world models for robots from sparse online observations is essential for robot task planning and execution in novel environments....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 6320
SubjectTerms Computational modeling
Diff erentiable simulation and rendering
Geometry
Neural radiance field
Object recognition
Optimization
Physical properties
physics-based modeling
Point cloud compression
Rendering
Rendering (computer graphics)
Representations
Robot learning
Robots
scene understanding
Task planning (robotics)
Three-dimensional displays
Visual observation
world modeling
Title One-Shot Real-to-Sim via End-to-End Differentiable Simulation and Rendering
URI https://ieeexplore.ieee.org/document/10982102
https://www.proquest.com/docview/3203975814
Volume 10
WOSCitedRecordID wos001501968400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEB0RxKE9tBSomjZEPnDhsKm9_ljvMYJElZoCSgDlZnlnxyISOBUYjv3tnV07AoR66Mm2vB6tnz07b3Z3ZgCOsEJEGRmhYpOJJKNE6KrkwVBSlVpih8Pn6b6eqbOzfLnUF12wuo-FISK_-YxG7tSv5ds1PrqpMtZwnTsXpQc9pbI2WOt5QsWlEtPpZiky1N9n8zE7gDIdxcxZMhm_Mj2-lsqbAdhblenH_-zPLnzo6GMwbr_3J9iieg_ev0gquA8_z2sSi5t1E8yZBIpmLRaru-BpVQaT2rpLPgSnXV0U1m9zSwG36Mp4BSXfnfv6ciztAK6mk8uTH6IrmSBQJqoRqI20pcmMNblKdIwhkUqjSiuK4rKUbBIpt4bKiJIQc8svkCOb6BgThZWt4s-wXa9r-gKB0lUUUsWet80ScvJSg449WUSyEvtwvEGz-N1mxii8RxHqgpEvHPJFh3wfDhx6L9q1wPVhsMG_6HTnoYhlyCQpzaPk6z8e-wbvnPR2x9YAtpv7RzqEHXxqVg_3Q-j9-jMZ-p_jL7S1uaA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5BmQQ8AIMhCgPysJc9uCSO88OPFWwqailT26G-RfH5olWCFK1p_37OTqp1QjzwlER2nPhLzved7bsDOMMKEWVkRBabVKiUlNBVyYOhpCqxxAaHj9P9Y5JNp_lyqa86Z3XvC0NEfvMZDdypX8u3a9y6qTKWcJ07E-UhPEqUkmHrrnU3peKCielkvxgZ6k-T2ZBNQJkMYmYtqYzvKR-fTeWvIdjrlcvn__lGL-BZRyCDYfvFj-EB1S_h6UFYwVcw_l6TmN-sm2DGNFA0azFf_Qp2qzK4qK275EPwpcuMwhJuflLANbpEXkHJpTOfYY5bO4Hry4vF55HokiYIlCprBGojbWlSY02eKR1jSJQlUaUziuKylKwUKbeGyohUiLnlDuTISjpGlWFlq_g19Op1TW8gyHQVhVSx7W1TRa69xKDjTxaRrMQ-nO_RLH63sTEKb1OEumDkC4d80SHfhxOH3kG9Frg-nO7xLzrp2RSxDJkmJXmk3v7jto_weLT4NikmX6fjd_DEPandv3UKveZ2S-_hCHfNanP7wf8ifwAhNLu2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-Shot+Real-to-Sim+via+End-to-End+Differentiable+Simulation+and+Rendering&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Zhu%2C+Yifan&rft.au=Xiang%2C+Tianyi&rft.au=Dollar%2C+Aaron+M.&rft.au=Pan%2C+Zherong&rft.date=2025-06-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=10&rft.issue=6&rft.spage=6320&rft.epage=6327&rft_id=info:doi/10.1109%2FLRA.2025.3566623&rft.externalDocID=10982102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon