Step Size Adaptation for Accelerated Stochastic Momentum Algorithm Using SDE Modeling and Lyapunov Drift Minimization

Training machine learning models often involves solving high-dimensional stochastic optimization problems, where stochastic gradient-based algorithms are hindered by slow convergence. Although momentum-based methods perform well in deterministic settings, their effectiveness diminishes under gradien...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 73; pp. 3124 - 3139
Main Authors: Yuan, Yulan, Tsang, Danny H. K., Lau, Vincent K. N.
Format: Journal Article
Language:English
Published: New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1053-587X, 1941-0476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Training machine learning models often involves solving high-dimensional stochastic optimization problems, where stochastic gradient-based algorithms are hindered by slow convergence. Although momentum-based methods perform well in deterministic settings, their effectiveness diminishes under gradient noise. In this paper, we introduce a novel accelerated stochastic momentum algorithm. Specifically, we first model the trajectory of discrete-time momentum-based algorithms using continuous-time stochastic differential equations (SDEs). By leveraging a tailored Lyapunov function, we derive 2-D adaptive step sizes through Lyapunov drift minimization, which significantly enhance both convergence speed and noise stability. The proposed algorithm not only accelerates convergence but also eliminates the need for hyperparameter fine-tuning, consistently achieving robust accuracy in machine learning tasks.
AbstractList Training machine learning models often involves solving high-dimensional stochastic optimization problems, where stochastic gradient-based algorithms are hindered by slow convergence. Although momentum-based methods perform well in deterministic settings, their effectiveness diminishes under gradient noise. In this paper, we introduce a novel accelerated stochastic momentum algorithm. Specifically, we first model the trajectory of discrete-time momentum-based algorithms using continuous-time stochastic differential equations (SDEs). By leveraging a tailored Lyapunov function, we derive 2-D adaptive step sizes through Lyapunov drift minimization, which significantly enhance both convergence speed and noise stability. The proposed algorithm not only accelerates convergence but also eliminates the need for hyperparameter fine-tuning, consistently achieving robust accuracy in machine learning tasks.
Author Yuan, Yulan
Tsang, Danny H. K.
Lau, Vincent K. N.
Author_xml – sequence: 1
  givenname: Yulan
  orcidid: 0009-0004-6817-0310
  surname: Yuan
  fullname: Yuan, Yulan
  email: yyuan202@connect.hkust-gz.edu.cn
  organization: Internet of Things Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
– sequence: 2
  givenname: Danny H. K.
  orcidid: 0000-0003-0135-7098
  surname: Tsang
  fullname: Tsang, Danny H. K.
  email: eetsang@ece.ust.hk
  organization: Internet of Things Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
– sequence: 3
  givenname: Vincent K. N.
  orcidid: 0000-0001-7769-6008
  surname: Lau
  fullname: Lau, Vincent K. N.
  email: eeknlau@ece.ust.hk
  organization: Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
BookMark eNpFkMtLAzEQxoNUsD7uHjwEPG_NazfJsbS-oKKwFbwtaTZrU3aTNZsV9K83tYKnmWF-33zDdwomzjsDwCVGM4yRvFmXLzOCSD6juSQFF0dgiiXDGWK8mKQe5TTLBX87AafDsEMIMyaLKRjLaHpY2m8D57Xqo4rWO9j4AOdam9YEFU0Ny-j1Vg3RavjkO-Pi2MF5--6DjdsOvg7WvcNyeZuWtWn3g3I1XH2pfnT-Ey6DbSJ8ss529vvX4BwcN6odzMVfPQPru9v14iFbPd8_LuarTBPGY6aZrBnapE8xo0VdI6wUU4IZKrVAXDC8aQhVikgicqJzLoTWFJmNEkLKmp6B68PZPviP0Qyx2vkxuORY0WSQ55IjnCh0oHTwwxBMU_XBdip8VRhV-2yrlG21z7b6yzZJrg4Sa4z5xxNbcMLoD-X9d94
CODEN ITPRED
Cites_doi 10.1007/978-1-84628-696-4_13
10.1007/b98874
10.1007/978-1-4757-3863-6
10.18653/v1/2020.emnlp-main.634
10.4135/9781412983907.n1717
10.1109/JIOT.2022.3230452
10.1109/ICCA51439.2020.9264458
10.1109/JIOT.2024.3376821
10.1109/JIOT.2023.3340014
10.1007/s10107-021-01681-8
10.1016/0370-1573(76)90029-6
10.1109/TNNLS.2021.3056947
10.1016/0041-5553(64)90137-5
10.1109/TSP.2022.3186526
10.1109/TSP.2020.2981904
10.1109/ECC.2015.7330562
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2025.3592678
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 3139
ExternalDocumentID 10_1109_TSP_2025_3592678
11096724
Genre orig-research
GrantInformation_xml – fundername: Research Grants Council (RGC), Hong Kong
  grantid: 16207221
– fundername: Guangzhou Municipal Science and Technology Project
  grantid: 2023A03J0011
  funderid: 10.13039/501100010256
– fundername: Guangzhou Municipal Key Laboratory on Future Networked Systems
  grantid: 024A03J0623
– fundername: Guangdong Provincial Project
  grantid: 2021JC02X149
– fundername: Guangdong Provincial Key Laboratory of Integrated Communications, Sensing and Computation for Ubiquitous Internet of Things
  grantid: 2023B1212010007
– fundername: Research Grants Council (RGC), Hong Kong, under the Areas of Excellence Scheme
  grantid: AoE/E-601/22-R
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
ABAZT
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c247t-c49d40b4491436dd01aa4a84e39c807841bf23aa292852c5788cc30eba8899d3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001566919900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Sat Nov 01 15:11:50 EDT 2025
Sat Nov 29 07:34:48 EST 2025
Mon Dec 08 03:37:12 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-c49d40b4491436dd01aa4a84e39c807841bf23aa292852c5788cc30eba8899d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-6817-0310
0000-0003-0135-7098
0000-0001-7769-6008
PQID 3247559701
PQPubID 85478
PageCount 16
ParticipantIDs proquest_journals_3247559701
crossref_primary_10_1109_TSP_2025_3592678
ieee_primary_11096724
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Orvieto (ref6) 2020
ref12
ref15
Li (ref18) 2019; 20
ref31
ref11
Malladi (ref20) 2022; 35
ref33
ref32
LeCun (ref35)
ref1
Li (ref19) 2021
Guo (ref14) 2021
ref17
Itô (ref24) 1951
Su (ref16) 2016; 17
Kingma (ref7) 2014
Li (ref2) 2019
Sebbouh (ref3) 2021
Peng (ref10) 2020
Li (ref22) 2017
Keskar (ref8) 2016
ref23
ref26
Zhang (ref13) 2022
ref25
Smith (ref29) 2020
Reddi (ref34) 2019
ref21
ref28
Donsker (ref30) 1951
ref9
ref4
ref5
Ziyin (ref27) 2021
References_xml – start-page: 9058
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2020
  ident: ref29
  article-title: On the generalization benefit of noise in stochastic gradient descent
– ident: ref23
  doi: 10.1007/978-1-84628-696-4_13
– ident: ref12
  doi: 10.1007/b98874
– year: 2022
  ident: ref13
  article-title: DRSOM: A dimension reduced second-order method
– ident: ref28
  doi: 10.1007/978-1-4757-3863-6
– ident: ref11
  doi: 10.18653/v1/2020.emnlp-main.634
– ident: ref33
  doi: 10.4135/9781412983907.n1717
– year: 1951
  ident: ref30
  article-title: An invariance principle for certain probability limit theorems
– ident: ref9
  doi: 10.1109/JIOT.2022.3230452
– volume: 35
  start-page: 7697
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2022
  ident: ref20
  article-title: On the SDEs and scaling rules for adaptive gradient algorithms
– year: 2020
  ident: ref10
  article-title: How to fine-tune deep neural networks in few-shot learning?
– ident: ref15
  doi: 10.1109/ICCA51439.2020.9264458
– ident: ref25
  doi: 10.1109/JIOT.2024.3376821
– year: 2021
  ident: ref19
  article-title: On the validity of modeling SGD with stochastic differential equations (SDEs)
– ident: ref26
  doi: 10.1109/JIOT.2023.3340014
– start-page: 983
  volume-title: Proc. 22nd Int. Nat. Conf. Artif. Intell. Statist.
  year: 2019
  ident: ref2
  article-title: On the convergence of stochastic gradient descent with adaptive stepsizes
– start-page: 3935
  volume-title: Proc. Conf. Learn. Theory
  year: 2021
  ident: ref3
  article-title: Almost sure convergence rates for stochastic gradient descent and stochastic heavy ball
– ident: ref17
  doi: 10.1007/s10107-021-01681-8
– ident: ref21
  doi: 10.1016/0370-1573(76)90029-6
– start-page: 2101
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2017
  ident: ref22
  article-title: Stochastic modified equations and adaptive stochastic gradient algorithms
– ident: ref31
  doi: 10.1109/TNNLS.2021.3056947
– year: 2019
  ident: ref34
  article-title: On the convergence of Adam and beyond
– year: 2016
  ident: ref8
  article-title: On large-batch training for deep learning: Generalization gap and sharp minima
– volume-title: On Stochastic Differential Equations
  year: 1951
  ident: ref24
– start-page: 356
  volume-title: Proc. Uncertainty Artif. Intell.
  year: 2020
  ident: ref6
  article-title: The role of memory in stochastic optimization
– year: 2021
  ident: ref14
  article-title: A novel convergence analysis for algorithms of the Adam family and beyond
– year: 2014
  ident: ref7
  article-title: Adam: A method for stochastic optimization
– ident: ref4
  doi: 10.1016/0041-5553(64)90137-5
– ident: ref32
  doi: 10.1109/TSP.2022.3186526
– ident: ref1
  doi: 10.1109/TSP.2020.2981904
– ident: ref5
  doi: 10.1109/ECC.2015.7330562
– year: 2021
  ident: ref27
  article-title: Strength of minibatch noise in SGD
– volume: 17
  start-page: 1
  issue: 153
  year: 2016
  ident: ref16
  article-title: A differential equation for modeling Nesterov’s accelerated gradient method: Theory and insights
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 1
  issue: 40
  year: 2019
  ident: ref18
  article-title: Stochastic modified equations and dynamics of stochastic gradient algorithms I: Mathematical foundations
  publication-title: J. Mach. Learn. Res.
– ident: ref35
  article-title: The MNIST database of handwritten digits
SSID ssj0014496
Score 2.4671195
Snippet Training machine learning models often involves solving high-dimensional stochastic optimization problems, where stochastic gradient-based algorithms are...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 3124
SubjectTerms Algorithms
Approximation algorithms
Cognitive tasks
Convergence
Differential equations
Heuristic algorithms
Liapunov functions
Lyapunov drift
Machine learning
Mathematical models
Momentum
Noise
Optimization
Signal processing algorithms
Stability analysis
stochastic differential equation
Stochastic momentum
Stochastic processes
Trajectory
Title Step Size Adaptation for Accelerated Stochastic Momentum Algorithm Using SDE Modeling and Lyapunov Drift Minimization
URI https://ieeexplore.ieee.org/document/11096724
https://www.proquest.com/docview/3247559701
Volume 73
WOSCitedRecordID wos001566919900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUAMcDAN6J8yQMLQ9rUduJ4rKCIAapK7dAtcmwHItGkShMk-PX4nBQqIQa2DEkU3cW-d7679xC6gRyAcUm9lAnuMZlyT9gw5wUsTVWScGlM5MQm-GgUzWZi3A6ru1kYY4xrPjNduHS1fF2oGo7KesCOGXLCNtEm52EzrPVdMmDMiXFZvEC9IOKzVU3SF73pZGwzQRJ0aSBICIpqazHIiar82oldeHnY_-eHHaC9FkfiQeP4Q7Rh8iO0u8YueIxq6ODCk-zT4IGWi6bmji1IxQOlbLQBkgiNJ1WhXiWwNeNnYGOo6jkevL0UZVa9zrHrKMCT-yEG0TQYXccy1_jpQy7qvHjH92WWVvg5y7N5O9B5gqYPw-ndo9eqLHiKMF55ignN_MSaz0KnUGu_LyWTETNUKCCjZ_0kJVRKIkgUEGVXeKQU9U0iI5uraXqKtvIiN2cIE6m0TzS1WZKxW4HFojQEMRMFnDJBqDvodmX2eNFwacQuB_FFbF0Ug4vi1kUddAJm_rmvtXAHXa4cFberbRlbUMghM_L75388doF24O3N2ckl2qrK2lyhbfVeZcvy2v1IX1MhxiA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7tskgLB_YFojwWH_bCIZDaThwfKx5itW2F1B56ixzbgUg0qUqCBL8ej5OySIgDtxwSJZqJPd94Zr4P4A_mAFwoFuRcioCrXATShbkg4nmus0woaxMvNiHG42Q2k9fdsLqfhbHW-uYze4KXvpZvKt3gUdkpsmPGgvLP8CXinIbtuNZL0YBzL8flEAMLokTMVlXJUJ5OJ9cuF6TRCYskjVFT7VUU8rIqb_ZiH2Auv33w077DVockyaB1_Q_4ZMufsPmKX_AXNNjDRSbFkyUDoxZt1Z04mEoGWrt4gzQRhkzqSt8q5GsmI-RjqJs5GdzdVMuivp0T31NAJucXBGXTcHidqNKQ4aNaNGX1QM6XRV6TUVEW826kcxumlxfTs6ug01kINOWiDjSXhoeZM58DT7ExYV8prhJumdRIR8_7WU6ZUlTSJKLarfFEaxbaTCUuWzNsB9bKqrS7QKjSJqSGuTzJus3AoVEWo5yJRlaZKDY9OF6ZPV20bBqpz0JCmToXpeiitHNRD7bRzP_v6yzcg4OVo9Juvd2nDhYKzI3C_t47jx3B16vpaJgO_47_7cMGvqk9STmAtXrZ2ENY1w91cb_87X-qZ8yuyWc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Step+Size+Adaptation+for+Accelerated+Stochastic+Momentum+Algorithm+Using+SDE+Modeling+and+Lyapunov+Drift+Minimization&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Yuan%2C+Yulan&rft.au=Tsang%2C+Danny+H.+K.&rft.au=Lau%2C+Vincent+K.+N.&rft.date=2025&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=73&rft.spage=3124&rft.epage=3139&rft_id=info:doi/10.1109%2FTSP.2025.3592678&rft.externalDocID=11096724
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon