Robust Sensor Fault Detection and Estimation for Parabolic Distributed Parameter Systems

Sensors play a key role in monitoring distributed parameter systems (DPSs), such as thermal and chemical diffusion-reaction processes. However, sensor faults can result in data distortion, degraded system performance, and even catastrophic consequences. This article proposes a model-based sensor fau...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement Jg. 74; S. 1 - 10
Hauptverfasser: Wang, Kui, Zhou, Jinhui, Shen, Wenjing, Zhou, Yu, Wei, Peng, Mou, Xiaolin, Chen, Liqun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9456, 1557-9662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Sensors play a key role in monitoring distributed parameter systems (DPSs), such as thermal and chemical diffusion-reaction processes. However, sensor faults can result in data distortion, degraded system performance, and even catastrophic consequences. This article proposes a model-based sensor fault diagnosis framework for DPSs, which can effectively detect the fault time and estimate the fault intensity. The proposed method only requires the limited measured output without any state information. Besides, noise will cause perturbations in the sampling data. Correspondingly, a linear matrix inequality (LMI) considering disturbance is designed. Through theoretical analysis, the convergence of fault estimation error is ensured. The effectiveness of the proposed method is verified on a heat transfer rod and a chemical diffusion-reaction system with static and time-varying sensor faults under disturbances. The root mean square errors of all sensor fault estimates are within 0.1078.
AbstractList Sensors play a key role in monitoring distributed parameter systems (DPSs), such as thermal and chemical diffusion-reaction processes. However, sensor faults can result in data distortion, degraded system performance, and even catastrophic consequences. This article proposes a model-based sensor fault diagnosis framework for DPSs, which can effectively detect the fault time and estimate the fault intensity. The proposed method only requires the limited measured output without any state information. Besides, noise will cause perturbations in the sampling data. Correspondingly, a linear matrix inequality (LMI) considering disturbance is designed. Through theoretical analysis, the convergence of fault estimation error is ensured. The effectiveness of the proposed method is verified on a heat transfer rod and a chemical diffusion-reaction system with static and time-varying sensor faults under disturbances. The root mean square errors of all sensor fault estimates are within 0.1078.
Author Chen, Liqun
Zhou, Yu
Mou, Xiaolin
Wang, Kui
Shen, Wenjing
Wei, Peng
Zhou, Jinhui
Author_xml – sequence: 1
  givenname: Kui
  orcidid: 0009-0005-4738-2821
  surname: Wang
  fullname: Wang, Kui
  email: 2310414026@stumail.sztu.edu.cn
  organization: College of Urban Transportation and Logistics, Shenzhen Technology University, Shenzhen, China
– sequence: 2
  givenname: Jinhui
  orcidid: 0000-0002-9588-1300
  surname: Zhou
  fullname: Zhou, Jinhui
  email: 2110412009@stumail.sztu.edu.cn
  organization: College of Urban Transportation and Logistics, Shenzhen Technology University, Shenzhen, China
– sequence: 3
  givenname: Wenjing
  orcidid: 0000-0003-2175-7179
  surname: Shen
  fullname: Shen, Wenjing
  email: shenwenjing@sztu.edu.cn
  organization: Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, China
– sequence: 4
  givenname: Yu
  orcidid: 0000-0003-4394-1903
  surname: Zhou
  fullname: Zhou, Yu
  email: yuzhoucsu@gmail.com
  organization: College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China
– sequence: 5
  givenname: Peng
  orcidid: 0000-0002-5147-7189
  surname: Wei
  fullname: Wei, Peng
  email: pengwei7@whut.edu.cn
  organization: School of Automation, Wuhan University of Technology, Wuhan, China
– sequence: 6
  givenname: Xiaolin
  orcidid: 0009-0004-6374-1655
  surname: Mou
  fullname: Mou, Xiaolin
  email: mouxiaolin@sztu.edu.cn
  organization: College of Urban Transportation and Logistics, Shenzhen Technology University, Shenzhen, China
– sequence: 7
  givenname: Liqun
  orcidid: 0000-0003-2484-9722
  surname: Chen
  fullname: Chen, Liqun
  email: chenliqun@sztu.edu.cn
  organization: College of Urban Transportation and Logistics, Shenzhen Technology University, Shenzhen, China
BookMark eNpNkLtPAzEMxiNUJNrCzsBwEvOVJJfHZUR9QKUiEO3AFiWXRLqqvZQkN_S_J30MLLZs_z5b_kZg0PnOAvCI4AQhKF42y48JhphOKkpqLtANGCJKeSkYwwMwhBDVpSCU3YFRjFsIIWeED8HPt9d9TMXadtGHYqH6XSpmNtkmtb4rVGeKeUztXp1Ll5EvFZT2u7YpZm1ModV9subc3WdZKNbHmOw-3oNbp3bRPlzzGKwX8830vVx9vi2nr6uywYSnHF1lDCMOV5rWjTaq1kIISkTlENEaGoU54jgPuTaOKGaIZloL7lhtqzF4vmw9BP_b25jk1vehywdlhbgQGNY1zxS8UE3wMQbr5CHkl8JRIihP7snsnjy5J6_uZcnTRdJaa__hAhHKUfUHR0huag
CODEN IEIMAO
Cites_doi 10.1016/j.jprocont.2010.06.016
10.1109/TAC.2023.3276773
10.1109/ICPHM.2019.8819432
10.1109/TSMC.2019.2956985
10.1109/TIM.2023.3315409
10.1080/00207170210149934
10.1016/j.amc.2019.02.010
10.1016/j.sna.2020.111990
10.1109/ACC.2016.7525607
10.1109/TCYB.2021.3049453
10.1016/j.autcon.2023.104885
10.1016/j.enconman.2018.05.015
10.1016/j.jfranklin.2017.03.004
10.1016/S0959-1524(97)00016-4
10.1016/j.automatica.2014.12.003
10.1109/TIM.2020.3010072
10.1016/j.isatra.2022.01.019
10.1007/s12555-019-0622-3
10.1109/TII.2019.2960601
10.1109/ACCESS.2023.3268702
10.1177/1077546314535947
10.1109/TTE.2021.3061426
10.35833/MPCE.2020.000928
10.1016/j.engappai.2023.105971
10.1109/TIE.2015.2497201
10.1007/978-3-319-32324-4
10.1109/TIE.2022.3190893
10.1109/TNNLS.2023.3334764
10.1177/1475921720934051
10.1109/TIE.2021.3075882
10.1109/TSP.2006.870579
10.1109/TASE.2023.3314757
10.1109/TCST.2016.2538200
10.1007/978-3-031-20422-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2025.3548791
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 10
ExternalDocumentID 10_1109_TIM_2025_3548791
10914571
Genre orig-research
GrantInformation_xml – fundername: Specific Project in Priority Areas of the Guangdong Provincial Regular Higher Education Institutions
  grantid: 2023ZDZX3027
– fundername: General Project of the Stability Support Plan for Shenzhen Colleges and Universities
  grantid: 20220715211524001
– fundername: Natural Science Foundation of Top Talent of SZTU
  grantid: GDRC202211
  funderid: 10.13039/501100017677
– fundername: National Natural Science Foundation of China
  grantid: 52206018
  funderid: 10.13039/501100001809
– fundername: Shenzhen Science and Technology Program
  grantid: JCYJ20230807093504008
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c247t-c2f3dd64f23b58cbda8b9995493f14bb0da27172b587bdf4a6d4b6bb97f68e3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001468368000036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Tue Jul 22 18:41:28 EDT 2025
Sat Nov 29 08:07:56 EST 2025
Wed Aug 27 01:39:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-c2f3dd64f23b58cbda8b9995493f14bb0da27172b587bdf4a6d4b6bb97f68e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2484-9722
0009-0005-4738-2821
0009-0004-6374-1655
0000-0002-9588-1300
0000-0003-4394-1903
0000-0002-5147-7189
0000-0003-2175-7179
PQID 3179920887
PQPubID 85462
PageCount 10
ParticipantIDs crossref_primary_10_1109_TIM_2025_3548791
ieee_primary_10914571
proquest_journals_3179920887
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
Zhang (ref34) 2008; 6
ref21
Ding (ref35) 2008
ref28
ref27
Ioannou (ref36) 2012
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref1
  doi: 10.1016/j.jprocont.2010.06.016
– ident: ref17
  doi: 10.1109/TAC.2023.3276773
– ident: ref20
  doi: 10.1109/ICPHM.2019.8819432
– ident: ref31
  doi: 10.1109/TSMC.2019.2956985
– ident: ref9
  doi: 10.1109/TIM.2023.3315409
– ident: ref33
  doi: 10.1080/00207170210149934
– ident: ref13
  doi: 10.1016/j.amc.2019.02.010
– ident: ref5
  doi: 10.1016/j.sna.2020.111990
– ident: ref19
  doi: 10.1109/ACC.2016.7525607
– ident: ref30
  doi: 10.1109/TCYB.2021.3049453
– ident: ref24
  doi: 10.1016/j.autcon.2023.104885
– ident: ref26
  doi: 10.1016/j.enconman.2018.05.015
– ident: ref21
  doi: 10.1016/j.jfranklin.2017.03.004
– ident: ref32
  doi: 10.1016/S0959-1524(97)00016-4
– ident: ref8
  doi: 10.1016/j.automatica.2014.12.003
– ident: ref10
  doi: 10.1109/TIM.2020.3010072
– ident: ref14
  doi: 10.1016/j.isatra.2022.01.019
– ident: ref16
  doi: 10.1007/s12555-019-0622-3
– ident: ref29
  doi: 10.1109/TII.2019.2960601
– ident: ref18
  doi: 10.1109/ACCESS.2023.3268702
– ident: ref15
  doi: 10.1177/1077546314535947
– volume-title: Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools
  year: 2008
  ident: ref35
– ident: ref4
  doi: 10.1109/TTE.2021.3061426
– ident: ref37
  doi: 10.35833/MPCE.2020.000928
– ident: ref23
  doi: 10.1016/j.engappai.2023.105971
– ident: ref6
  doi: 10.1109/TIE.2015.2497201
– ident: ref11
  doi: 10.1007/978-3-319-32324-4
– ident: ref22
  doi: 10.1109/TIE.2022.3190893
– ident: ref2
  doi: 10.1109/TNNLS.2023.3334764
– volume-title: Robust Adaptive Control
  year: 2012
  ident: ref36
– ident: ref25
  doi: 10.1177/1475921720934051
– ident: ref3
  doi: 10.1109/TIE.2021.3075882
– ident: ref7
  doi: 10.1109/TSP.2006.870579
– ident: ref12
  doi: 10.1109/TASE.2023.3314757
– ident: ref27
  doi: 10.1109/TCST.2016.2538200
– volume: 6
  start-page: 320
  issue: 3
  year: 2008
  ident: ref34
  article-title: Adaptive observer-based fast fault estimation
  publication-title: Int. J. Control, Autom., Syst.
– ident: ref28
  doi: 10.1007/978-3-031-20422-7
SSID ssj0007647
Score 2.4315257
Snippet Sensors play a key role in monitoring distributed parameter systems (DPSs), such as thermal and chemical diffusion-reaction processes. However, sensor faults...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Chemical diffusion
Chemicals
Detection
distributed parameter system (DPS)
Distributed parameter systems
disturbance
Electronic mail
Estimation
Fault detection
Fault diagnosis
Fault tolerant systems
Information systems
Interference
Linear matrix inequalities
Mathematical models
Noise
Observers
sensor fault
Training
Title Robust Sensor Fault Detection and Estimation for Parabolic Distributed Parameter Systems
URI https://ieeexplore.ieee.org/document/10914571
https://www.proquest.com/docview/3179920887
Volume 74
WOSCitedRecordID wos001468368000036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagAgkGHqWIQkEeWBjSJo4T2yOirWCgqmiHbpFfkSqVBOXB78d2UlSEGFgiK4kt6853vrPvvgPgHmnsK2O1eSjlsYepQp6gknhYUoJlFOpY-a7YBJnN6GrF5m2yusuF0Vq74DM9tE13l69yWdujspEFscSRzRjfJ4Q0yVrfapfEuAHIDIwEG7Ngeyfps9Hy5dV4gigahtY-Z8GPPcgVVfmlid32Mj3958TOwElrR8LHhvHnYE9nXXC8gy7YBYcuulOWF2D1lou6rODC-Kx5Aae83lRwrCsXhpVBnik4MaLeZDFCY8bCOS_M6tisJRxbZF1bFEsr9_bdxs_AFui8BxbTyfLp2WtLKngSYVKZZxoqFeMUhSKiUihOBbOQcCxMAyyErzgyDh4yH4lQKeaxwiIWgpE0pjq8BJ0sz_QVgJFAiCHJtaRGDWBFdRSqKEWCBGZ4H_XBw5bEyUeDm5E4f8NniWFHYtmRtOzog54l6c5_DTX7YLBlStJKVpmEFsIOWd14_Ue3G3BkR2_OSQagUxW1vgUH8rNal8WdWzRfGIfAFA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8Y1KgPfiBGFLUPvvgw2Lpu6x6NQCACIcIDb8v6sYQEh2Gbf79tNwzG-ODL0mzdutz1rnft3e8AHrEktlBWm4WT2LcIFdhilAcW4TQg3HOlL2xTbCKYTOhiEU6rZHWTCyOlNMFnsq2b5ixfrHmht8o6GsSSeDpjfN8jBDtluta34g18UkJkOkqGlWGwPZW0w858OFa-IPbarrbQQ-fHKmTKqvzSxWaB6Z_989fO4bSyJNFzyfoL2JNpHU528AXrcGjiO3l2CYu3NSuyHM2U17reoH5crHLUlbkJxEpRnArUU8Je5jEiZciiabxR82O15KirsXV1WSwpzN13HUGDKqjzBsz6vfnLwKqKKlgckyBX18QVwicJdplHORMxZaEGhQvdxCGM2SLGysXD6mHAREJiXxDmMxYGiU-lewW1dJ3Ka0AewzjEPJacKkVABJWeK7wEs8BRn7dxE562JI4-SuSMyHgcdhgpdkSaHVHFjiY0NEl3-pXUbEJry5Sokq0scjWIHdba8eaP1x7gaDAfj6LRcPJ6C8d6pHLXpAW1fFPIOzjgn_ky29ybCfQFQa7DWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Sensor+Fault+Detection+and+Estimation+for+Parabolic+Distributed+Parameter+Systems&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Wang%2C+Kui&rft.au=Zhou%2C+Jinhui&rft.au=Shen%2C+Wenjing&rft.au=Zhou%2C+Yu&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=74&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2025.3548791&rft.externalDocID=10914571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon