Monotone Lipschitz-Gradient Denoiser: Explainability of Operator Regularization Approaches Free From Lipschitz Constant Control

This paper addresses explainability of the operator-regularization approach under the use of monotone Lipschitz-gradient (MoL-Grad) denoiser - an operator that can be expressed as the Lipschitz continuous gradient of a differentiable convex function. We prove that an operator is a MoL-Grad denoiser...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on signal processing Ročník 73; s. 3378 - 3393
Hlavní autori: Yukawa, Masahiro, Yamada, Isao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1053-587X, 1941-0476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper addresses explainability of the operator-regularization approach under the use of monotone Lipschitz-gradient (MoL-Grad) denoiser - an operator that can be expressed as the Lipschitz continuous gradient of a differentiable convex function. We prove that an operator is a MoL-Grad denoiser if and only if it is the "single-valued" proximity operator of a weakly convex function. An extension of Moreau's decomposition is also shown with respect to a weakly convex function and the conjugate of its convexified function. Under these arguments, two specific algorithms, the forward-backward splitting algorithm and the primal-dual splitting algorithm, are considered, both employing MoL-Grad denoisers. These algorithms generate a sequence of vectors converging weakly, under conditions, to a minimizer of a certain cost function which involves an "implicit regularizer" induced by the denoiser. Unlike the previous studies of operator regularization, our framework requires no control of the Lipschitz constant in learning the denoiser. The theoretical findings are supported by simulations.
AbstractList This paper addresses explainability of the operator-regularization approach under the use of monotone Lipschitz-gradient (MoL-Grad) denoiser - an operator that can be expressed as the Lipschitz continuous gradient of a differentiable convex function. We prove that an operator is a MoL-Grad denoiser if and only if it is the "single-valued" proximity operator of a weakly convex function. An extension of Moreau's decomposition is also shown with respect to a weakly convex function and the conjugate of its convexified function. Under these arguments, two specific algorithms, the forward-backward splitting algorithm and the primal-dual splitting algorithm, are considered, both employing MoL-Grad denoisers. These algorithms generate a sequence of vectors converging weakly, under conditions, to a minimizer of a certain cost function which involves an "implicit regularizer" induced by the denoiser. Unlike the previous studies of operator regularization, our framework requires no control of the Lipschitz constant in learning the denoiser. The theoretical findings are supported by simulations.
Author Yukawa, Masahiro
Yamada, Isao
Author_xml – sequence: 1
  givenname: Masahiro
  orcidid: 0000-0002-3709-275X
  surname: Yukawa
  fullname: Yukawa, Masahiro
  email: yukawa@elec.keio.ac.jp
  organization: Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
– sequence: 2
  givenname: Isao
  orcidid: 0000-0002-6563-7526
  surname: Yamada
  fullname: Yamada, Isao
  email: isao@sp.ict.e.titech.ac.jp
  organization: Department of Information and Communications Engineering, Institute of Science Tokyo, Japan
BookMark eNpFkM9LwzAUx4MoqNO7Bw8Bz51J2jSttzF1CpOJTvBW0vTVRbqkJhm4XfzXzdhgl_cDvt_Pe3zP0bGxBhC6omRIKSlv5--vQ0YYH6a8IHkujtAZLTOakEzkx3EmPE14IT5P0bn334TQLCvzM_T3Yo0NEYWnuvdqocMmmTjZaDAB34Ox2oO7ww-_fSe1kbXudFhj2-JZD04G6_AbfK066fRGBm0NHvW9s1ItwONHBxCLXR7YeGyNDzKy4xCc7S7QSSs7D5f7PkAfjw_z8VMynU2ex6NpolgmQlJDxpqUy7JhIiM1VZRQWtdtm4s2B84K0dRC5qVKm0IJILJVlDNSxA1UXrfpAN3suPG7nxX4UH3blTPxZJUyHrVFycqoIjuVctZ7B23VO72Ubl1RUm1jrmLM1Tbmah9ztFzvLBoADnJK0pKTIv0HGXF-Xg
CODEN ITPRED
Cites_doi 10.1109/ICASSP48485.2024.10446368
10.1007/978-3-030-25939-6
10.1016/0898-1221(76)90003-1
10.1051/m2an/197509R200411
10.1109/TSP.2023.3263724
10.24033/bsmf.1625
10.1007/s10589-017-9954-1
10.1109/TSP.2015.2502551
10.1007/s00041-008-9045-x
10.1137/16M1102884
10.1109/GlobalSIP.2013.6737048
10.1007/978-1-4419-9569-8_17
10.1109/TSP.2011.2107908
10.1007/s10107-018-1303-3
10.1109/LSP.2017.2710233
10.1109/TNNLS.2012.2200262
10.1007/s10851-010-0251-1
10.1109/LSP.2020.3006390
10.1137/0716071
10.32614/cran.package.krls
10.1198/016214501753382273
10.1109/LSP.2014.2357681
10.1109/TSP.2016.2518989
10.7551/mitpress/7132.001.0001
10.1007/s10851-024-01181-2
10.1109/TSP.2023.3244082
10.1109/tit.2014.2312723
10.1007/s10957-012-0245-9
10.1109/TCI.2016.2599778
10.1109/TCI.2019.2893568
10.1137/151003714
10.1109/TSP.2012.2212015
10.1109/ICASSP.2014.6853752
10.1088/0266-5611/24/3/035020
10.1109/ICCV.2017.198
10.1007/BF03007664
10.1137/23M1565243
10.1109/MSP.2022.3199595
10.1109/MSP.2019.2949470
10.1137/17M1122451
10.1137/050626090
10.1080/10618600.1998.10474789
10.1109/TSP.2017.2711501
10.1137/20M1387961
10.1007/s10107-020-01500-6
10.1111/j.1541-0420.2007.00843.x
10.1137/20M1379344
10.1214/09-AOS729
10.1109/83.784433
10.1109/MSP.2022.3207451
10.1109/TCI.2018.2880326
10.1109/TSP.2018.2824289
10.1007/s10851-020-00951-y
10.1109/OJSP.2025.3579646
10.1088/1361-6420/ab551e
10.1007/978-3-319-48311-5
10.1214/07-SS014
10.1214/08-aos659
10.1109/LSP.2007.898300
10.1007/s11228-019-00526-z
10.1007/s10444-011-9254-8
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2025.3580667
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 3393
ExternalDocumentID 10_1109_TSP_2025_3580667
11039508
Genre orig-research
GrantInformation_xml – fundername: JSPS Grants-in-Aid
  grantid: 23K22762
  funderid: 10.13039/501100001691
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
AARMG
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c247t-be42d35a9d2740b1c1011bbff67f6e5287db7a69c3d8c7e0afc15208d8cec6bf3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001574169500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Thu Sep 18 02:40:41 EDT 2025
Sat Nov 29 07:29:09 EST 2025
Wed Oct 01 07:05:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-be42d35a9d2740b1c1011bbff67f6e5287db7a69c3d8c7e0afc15208d8cec6bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3709-275X
0000-0002-6563-7526
PQID 3251528929
PQPubID 85478
PageCount 16
ParticipantIDs ieee_primary_11039508
proquest_journals_3251528929
crossref_primary_10_1109_TSP_2025_3580667
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Shimizu (ref57) 2024
ref12
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
Zeng (ref60) 2015
ref10
ref17
ref16
ref19
ref18
ref51
ref50
Hurault (ref69) 2022
ref46
ref45
ref48
ref42
ref41
ref43
Vincent (ref56) 2010; 11
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Dinh (ref26) 1986; 129
ref35
ref34
Gao (ref54) 1997; 7
ref36
ref31
ref30
ref74
ref33
ref32
ref2
ref1
ref39
ref38
Moreau (ref47) 1962; 255
Yao (ref20) 2018; 18
ref71
ref70
ref73
ref72
Ryu (ref65) 2019; 97
ref24
ref23
ref67
Cohen (ref68) 2021; 34
ref25
ref64
ref63
ref22
ref66
ref21
ref28
ref27
ref29
Yukawa (ref44) 2023
ref62
Hurault (ref37) 2022; 162
ref61
References_xml – ident: ref51
  doi: 10.1109/ICASSP48485.2024.10446368
– ident: ref1
  doi: 10.1007/978-3-030-25939-6
– ident: ref6
  doi: 10.1016/0898-1221(76)90003-1
– ident: ref5
  doi: 10.1051/m2an/197509R200411
– ident: ref31
  doi: 10.1109/TSP.2023.3263724
– ident: ref40
  doi: 10.24033/bsmf.1625
– ident: ref21
  doi: 10.1007/s10589-017-9954-1
– ident: ref52
  doi: 10.1109/TSP.2015.2502551
– ident: ref15
  doi: 10.1007/s00041-008-9045-x
– ident: ref67
  doi: 10.1137/16M1102884
– ident: ref34
  doi: 10.1109/GlobalSIP.2013.6737048
– ident: ref49
  doi: 10.1007/978-1-4419-9569-8_17
– ident: ref70
  doi: 10.1109/TSP.2011.2107908
– ident: ref10
  doi: 10.1007/s10107-018-1303-3
– volume: 129
  start-page: 249
  volume-title: Algorithms for solving a class of nonconvex optimization problems: Methods of subgradient
  year: 1986
  ident: ref26
– ident: ref53
  doi: 10.1109/LSP.2017.2710233
– ident: ref59
  doi: 10.1109/TNNLS.2012.2200262
– volume: 18
  start-page: 1
  issue: 179
  year: 2018
  ident: ref20
  article-title: Efficient learning with a family of nonconvex regularizers by redistributing nonconvexity
  publication-title: J. Mach. Learn. Res.
– volume-title: Proc. IEICE Signal Process. Symp.
  year: 2023
  ident: ref44
  article-title: Cocoercive gradient operator of convex function and its associated weakly convex function: Generalized proximity operator for case of unique minimizer
– ident: ref7
  doi: 10.1007/s10851-010-0251-1
– ident: ref71
  doi: 10.1109/LSP.2020.3006390
– ident: ref3
  doi: 10.1137/0716071
– volume-title: Proc. IEICE Signal Process. Symp.
  year: 2024
  ident: ref57
  article-title: Implicit regularizer associated with tied-nonnegative-weight neural network: Plug-and-play for image restration and convergence to optimal point
– ident: ref24
  doi: 10.32614/cran.package.krls
– volume: 34
  start-page: 18152
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2021
  ident: ref68
  article-title: It has potential: Gradient-driven denoisers for convergent solutions to inverse problems
– ident: ref13
  doi: 10.1198/016214501753382273
– year: 2015
  ident: ref60
  article-title: The ordered weighted $\ell_{1}$ Norm: Atomic formulation, projections, and algorithms
– ident: ref74
  doi: 10.1109/LSP.2014.2357681
– ident: ref41
  doi: 10.1109/TSP.2016.2518989
– ident: ref27
  doi: 10.7551/mitpress/7132.001.0001
– ident: ref36
  doi: 10.1007/s10851-024-01181-2
– ident: ref32
  doi: 10.1109/TSP.2023.3244082
– volume: 97
  start-page: 5546
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2019
  ident: ref65
  article-title: Plug-and-play methods provably converge with properly trained denoisers
– ident: ref25
  doi: 10.1109/tit.2014.2312723
– ident: ref8
  doi: 10.1007/s10957-012-0245-9
– ident: ref42
  doi: 10.1109/TCI.2016.2599778
– ident: ref66
  doi: 10.1109/TCI.2019.2893568
– ident: ref23
  doi: 10.1137/151003714
– volume: 162
  start-page: 9483
  volume-title: Proc. ICML
  year: 2022
  ident: ref37
  article-title: Proximal denoiser for convergent plug-and-play optimization with nonconvex regularization
– ident: ref18
  doi: 10.1109/TSP.2012.2212015
– ident: ref33
  doi: 10.1109/ICASSP.2014.6853752
– volume: 255
  start-page: 2897
  year: 1962
  ident: ref47
  article-title: Fonctions convexes duales et points proximaux dans un espace hilbertien
  publication-title: C. R. Acad. Sci. Paris Ser. A Math.
– ident: ref14
  doi: 10.1088/0266-5611/24/3/035020
– ident: ref43
  doi: 10.1109/ICCV.2017.198
– ident: ref50
  doi: 10.1007/BF03007664
– ident: ref38
  doi: 10.1137/23M1565243
– ident: ref64
  doi: 10.1109/MSP.2022.3199595
– ident: ref62
  doi: 10.1109/MSP.2019.2949470
– volume: 11
  start-page: 3371
  issue: 110
  year: 2010
  ident: ref56
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: ref73
  doi: 10.1137/17M1122451
– ident: ref4
  doi: 10.1137/050626090
– ident: ref55
  doi: 10.1080/10618600.1998.10474789
– ident: ref29
  doi: 10.1109/TSP.2017.2711501
– ident: ref35
  doi: 10.1137/20M1387961
– ident: ref46
  doi: 10.1007/s10107-020-01500-6
– ident: ref58
  doi: 10.1111/j.1541-0420.2007.00843.x
– volume-title: Proc. ICLR
  year: 2022
  ident: ref69
  article-title: Gradient step denoiser for convergent plug-and-play
– ident: ref11
  doi: 10.1137/20M1379344
– ident: ref17
  doi: 10.1214/09-AOS729
– ident: ref28
  doi: 10.1109/83.784433
– volume: 7
  start-page: 855
  issue: 4
  year: 1997
  ident: ref54
  article-title: WaveShrink with firm shrinkage
  publication-title: Statistica Sinica
– ident: ref63
  doi: 10.1109/MSP.2022.3207451
– ident: ref72
  doi: 10.1109/TCI.2018.2880326
– ident: ref19
  doi: 10.1109/TSP.2018.2824289
– ident: ref45
  doi: 10.1007/s10851-020-00951-y
– ident: ref48
  doi: 10.1137/050626090
– ident: ref61
  doi: 10.1109/OJSP.2025.3579646
– ident: ref30
  doi: 10.1088/1361-6420/ab551e
– ident: ref39
  doi: 10.1007/978-3-319-48311-5
– ident: ref12
  doi: 10.1214/07-SS014
– ident: ref16
  doi: 10.1214/08-aos659
– ident: ref22
  doi: 10.1109/LSP.2007.898300
– ident: ref2
  doi: 10.1007/s11228-019-00526-z
– ident: ref9
  doi: 10.1007/s10444-011-9254-8
SSID ssj0014496
Score 2.4981444
Snippet This paper addresses explainability of the operator-regularization approach under the use of monotone Lipschitz-gradient (MoL-Grad) denoiser - an operator that...
This paper addresses explainability of the operator-regularization approach under the use of monotone Lipschitz-gradient (MoL-Grad) denoiser — an operator that...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 3378
SubjectTerms Algorithms
Convergence
Convex functions
convex optimization
Cost function
Estimation
Linear programming
Lipschitz condition
nonexpansive operator
Operators (mathematics)
proximity operator
Regularization
Signal processing
Signal processing algorithms
Splitting
Sufficient conditions
Training
Vectors
Weakly convex function
Title Monotone Lipschitz-Gradient Denoiser: Explainability of Operator Regularization Approaches Free From Lipschitz Constant Control
URI https://ieeexplore.ieee.org/document/11039508
https://www.proquest.com/docview/3251528929
Volume 73
WOSCitedRecordID wos001574169500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBZxGFgjywMKTN007YqkJhqEoFBXWLYucsdaCpkhQJFv46ZyelSIiBJXIkx0r82bk7f_cg5BKlGpMSF2_AbWn5kXIskfhgMcQ7CQUIaXLpvQz5aBROp9G4DlY3sTAAYJzPoKObhstPM7nUR2VdR_OWgQ7t3eScVcFa35SB75tiXKgveFYQ8umKk7Sj7uRpjJagG3Q058dMSfm1DDJFVX79iY14Gez988X2yW6tR9JeBfwB2YD5Idn5kV3wiHzifs10rm06nC0KzRd8WHe5cfEq6Q3MM12G-ZpqLzwTQqW9ZN9ppujDAgz5Th9Nofq8DtWkvTr_OBR0kAPgJXtdj037lapZ6oZ2f2-S58HtpH9v1fUWLOn6vLQE-G7qBUmUoqlqC0fidnWEUIpxxSBA2yoVPGGR9NJQcrATJVH62yHegWRCecekMcevOiHUTSBSPnZOk9SP0KZDPUqFUmdjQ4uYiRa5WiEQL6q0GrExR-woRrRijVZco9UiTT3j6371ZLdIe4VZXG-8IvZQX8M3RaXv9I_Hzsi2Hr06RmmTRpkv4ZxsybdyVuQXZk19ASJyzTE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQIAEDb0ShgAcWhkDavNlQoRQRSgUFdYti5yx1oKnSgAQLf507x6VIiIElciQncfzFuTvf42PsGKWaLyV-vF5gS8uNVMMSqQuWj3inoQAhdS295zjodsPBIOqZZHWdCwMAOvgMTqmpfflZLl9pq-ysQX5Lj1J7F4g6y6RrfTsNXFfTcaHG4FheGAymXkk7Ous_9tAWbHqn5PXzNan8TAppWpVf_2ItYNpr_xzaOls1miS_qKDfYHMw2mQrP-oLbrFPXLE5Vdvm8XA8IY_Bh3Vd6CCvkl_CKCci5nNOcXg6iYriZN95rvj9GLT7nT9oqvrCJGvyC1OBHCa8XQDgIX-Z3Zu3KmWzpAYFwG-zp_ZVv9WxDOOCJZtuUFoC3GbmeGmUobFqi4bEBdsQQik_UD54aF1lIkj9SDpZKAOwUyVR_tshnoH0hXJ22PwI32qX8WYKkXKxc5ZmboRWHWpSKpRUjw1tYl_U2MkUgWRcFdZItEFiRwmilRBaiUGrxrZpxmf9zGTXWH2KWWKW3iRxUGPDkaLat_fHZUdsqdO_i5P4pnu7z5bpSdWmSp3Nl8UrHLBF-VYOJ8Wh_r6-APlf0Ho
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monotone+Lipschitz-Gradient+Denoiser%3A+Explainability+of+Operator+Regularization+Approaches+Free+From+Lipschitz+Constant+Control&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Yukawa%2C+Masahiro&rft.au=Yamada%2C+Isao&rft.date=2025&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=73&rft.spage=3378&rft.epage=3393&rft_id=info:doi/10.1109%2FTSP.2025.3580667&rft.externalDocID=11039508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon