Momentum-Based Multiagent Approaches to Distributed Nonconvex Optimization
In this article, a paradigm of momentum-based systems is introduced for nonconvex optimization. Based on the paradigm, a momentum-based system and a momentum-based multiagent system are developed for nonconvex constrained optimization and distributed nonconvex optimization, respectively, and the con...
Uložené v:
| Vydané v: | IEEE transactions on automatic control Ročník 70; číslo 5; s. 3331 - 3338 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.05.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9286, 1558-2523 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this article, a paradigm of momentum-based systems is introduced for nonconvex optimization. Based on the paradigm, a momentum-based system and a momentum-based multiagent system are developed for nonconvex constrained optimization and distributed nonconvex optimization, respectively, and the convergence and convergence rate to a local optimal solution are proven. In addition, a hybrid swarm intelligence algorithm is established, which consists of multiple momentum-based systems for scattering searches and a meta-heuristic rule for repositioning the states upon their local convergence. Two numerical examples are elaborated to verify and demonstrate the optimality, enhanced stability, and faster convergence of the proposed approaches. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9286 1558-2523 |
| DOI: | 10.1109/TAC.2024.3522188 |