Improving Social Robot Recommendation Acceptance Through Geo-Gender Affinity Construction

As artificial intelligence and robotics advance, social robots are increasingly integrated into service domains, necessitating strategies to enhance user acceptance of their recommendations. Prior work has explored how gendered appearance influences user acceptance, yet the role of linguistic featur...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 10; no. 9; pp. 9064 - 9071
Main Authors: Fu, Changzeng, Li, Zihan, Wang, Songyang, Ishiguro, Hiroshi, Yoshikawa, Yuichiro
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As artificial intelligence and robotics advance, social robots are increasingly integrated into service domains, necessitating strategies to enhance user acceptance of their recommendations. Prior work has explored how gendered appearance influences user acceptance, yet the role of linguistic features, such as regional dialects and gendered text, remains underexplored. Drawing on Social Influence Theory, we propose that linguistic similarity (e.g., dialect familiarity) and gendered communication styles may synergistically enhance attraction and identification, in turn boosting recommendation acceptance. To address this gap, we investigate three research questions: (1) How do regional dialects and gendered linguistic styles independently affect robot's attraction and identification (e.g., perceived robot likability, anthropomorphism, and intelligence)? (2) Does gendered text in robot speech enhance acceptance of recommendations? (3) To what extent do regional dialects and gendered styles interact to jointly shape outcomes? We introduce geo-gender affinity, a design principle combining regional dialects ("geo") and gendered linguistic features ("gender"), and test its effects via a 2 × 2 between-subjects experiment with 62 Chinese-speaking participants. Results demonstrate that regional dialects significantly heightened likability, anthropomorphism, and perceived intelligence (addressing RQ1), while gendered text improved recommendation acceptance (RQ2). Notably, the combination of dialects and gendered text revealed that geo-gender affinity amplified acceptance for perceiving linguistic elements as aligned with their identity (RQ3). These findings establish geo-gender affinity as a socially grounded framework for optimizing robot communication, offering practical implications for AI-driven services to enhance user engagement and trust.
AbstractList As artificial intelligence and robotics advance, social robots are increasingly integrated into service domains, necessitating strategies to enhance user acceptance of their recommendations. Prior work has explored how gendered appearance influences user acceptance, yet the role of linguistic features, such as regional dialects and gendered text, remains underexplored. Drawing on Social Influence Theory, we propose that linguistic similarity (e.g., dialect familiarity) and gendered communication styles may synergistically enhance attraction and identification, in turn boosting recommendation acceptance. To address this gap, we investigate three research questions: (1) How do regional dialects and gendered linguistic styles independently affect robot's attraction and identification (e.g., perceived robot likability, anthropomorphism, and intelligence)? (2) Does gendered text in robot speech enhance acceptance of recommendations? (3) To what extent do regional dialects and gendered styles interact to jointly shape outcomes? We introduce geo-gender affinity, a design principle combining regional dialects ("geo") and gendered linguistic features ("gender"), and test its effects via a 2 × 2 between-subjects experiment with 62 Chinese-speaking participants. Results demonstrate that regional dialects significantly heightened likability, anthropomorphism, and perceived intelligence (addressing RQ1), while gendered text improved recommendation acceptance (RQ2). Notably, the combination of dialects and gendered text revealed that geo-gender affinity amplified acceptance for perceiving linguistic elements as aligned with their identity (RQ3). These findings establish geo-gender affinity as a socially grounded framework for optimizing robot communication, offering practical implications for AI-driven services to enhance user engagement and trust.
Author Li, Zihan
Wang, Songyang
Fu, Changzeng
Ishiguro, Hiroshi
Yoshikawa, Yuichiro
Author_xml – sequence: 1
  givenname: Changzeng
  orcidid: 0000-0003-1083-9486
  surname: Fu
  fullname: Fu, Changzeng
  email: fuchangzeng@qhd.neu.edu.cn
  organization: SSTC, Northeastern University, Qinhuangdao, China
– sequence: 2
  givenname: Zihan
  surname: Li
  fullname: Li, Zihan
  organization: SSTC, Northeastern University, Qinhuangdao, China
– sequence: 3
  givenname: Songyang
  surname: Wang
  fullname: Wang, Songyang
  organization: SSTC, Northeastern University, Qinhuangdao, China
– sequence: 4
  givenname: Hiroshi
  orcidid: 0000-0002-0805-7648
  surname: Ishiguro
  fullname: Ishiguro, Hiroshi
  organization: Graduate School of Engineering Science, Osaka University, Osaka, Japan
– sequence: 5
  givenname: Yuichiro
  orcidid: 0000-0002-3484-0361
  surname: Yoshikawa
  fullname: Yoshikawa, Yuichiro
  organization: Graduate School of Engineering Science, Osaka University, Osaka, Japan
BookMark eNpNkE1LAzEQhoMoWGvvHjwEPG_NxybpHpeitVAQaj14Ckl2tt3SJjW7K_Tfm9KCnmYOzzvD-9yhax88IPRAyZhSUjwvluWYESbGXBSMSHqFBowrlXEl5fW__RaN2nZLCKGCKV6IAfqa7w8x_DR-jT-Ca8wOL4MNHV6CC_s9-Mp0TfC4dA4OnfEO8GoTQ7_e4BmEbJYAiLis68Y33RFPg2-72LtT5h7d1GbXwugyh-jz9WU1fcsW77P5tFxkjuWqy6yUZsKrQkhXF1VOgVjrrGEVq4w1NFeFtaIgqaUQDpyhwubCKT6BiaC2cnyIns53U4_vHtpOb0MffXqpOculUjKnJFHkTLkY2jZCrQ-x2Zt41JTok0OdHOqTQ31xmCKP50gDAH94YmlOCP8Fk5Fv1w
CODEN IRALC6
Cites_doi 10.1108/IJCHM-12-2022-1523
10.1109/HRI.2019.8673222
10.1089/gg.2016.29002.nom
10.1108/JHTT-12-2023-0428
10.1007/s12369-023-01035-8
10.1007/s12369-018-0502-7
10.1177/1094670511414551
10.1016/j.ijhm.2022.103166
10.3200/SOCP.148.2.253-256
10.1007/978-3-319-47437-3_20
10.1080/0144929X.2020.1723701
10.1007/s12369-008-0001-3
10.1109/IROS.2009.5354116
10.1016/j.jbusres.2022.03.087
10.3390/su13179655
10.1109/RO-MAN47096.2020.9223599
10.4324/9781315703855
10.1108/JPBM-05-2016-1199
10.1037/0033-295X.98.2.224
10.3390/robotics10010047
10.1007/s12369-020-00643-y
10.1109/LRA.2021.3094779
10.1109/RO-MAN47096.2020.9223432
10.1109/HRI.2019.8673232
10.1145/1463160.1463235
10.14807/ijmp.v13i1.1555
10.1111/ijcs.12755
10.3390/s22030991
10.1007/978-981-99-8718-4_7
10.1007/978-1-4419-1465-1_19
10.1002/mar.21498
10.1093/joc/50.1.46
10.1016/s0065-2601(07)00002-0
10.3389/frobt.2022.983955
10.20965/jrm.2023.p0844
10.1016/j.chb.2014.05.014
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2025.3592061
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 9071
ExternalDocumentID 10_1109_LRA_2025_3592061
11091400
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62306068
  funderid: 10.13039/501100001809
– fundername: Moonshot R&D
  grantid: JPMJMS2011
– fundername: Natural Science Foundation of Hebei Province, China
  grantid: F2024501002
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c247t-b66a83d956cf9d41e0bbcba2d2daba1479bb59010955ceca15b45c738e851bdc3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001542439700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sat Nov 22 13:40:28 EST 2025
Thu Nov 27 01:05:35 EST 2025
Wed Nov 26 07:22:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-b66a83d956cf9d41e0bbcba2d2daba1479bb59010955ceca15b45c738e851bdc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0805-7648
0000-0002-3484-0361
0000-0003-1083-9486
PQID 3246776410
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_primary_10_1109_LRA_2025_3592061
ieee_primary_11091400
proquest_journals_3246776410
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref18
Zhang (ref25) 2007
Kraus (ref33) 2018
ref24
ref23
ref26
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Jincheng (ref30) 2017; 39
ref40
Reeves (ref19) 1996; 10
References_xml – ident: ref14
  doi: 10.1108/IJCHM-12-2022-1523
– ident: ref12
  doi: 10.1109/HRI.2019.8673222
– ident: ref31
  doi: 10.1089/gg.2016.29002.nom
– ident: ref1
  doi: 10.1108/JHTT-12-2023-0428
– ident: ref8
  doi: 10.1007/s12369-023-01035-8
– ident: ref9
  doi: 10.1007/s12369-018-0502-7
– ident: ref24
  doi: 10.1177/1094670511414551
– ident: ref35
  doi: 10.1016/j.ijhm.2022.103166
– ident: ref20
  doi: 10.3200/SOCP.148.2.253-256
– ident: ref7
  doi: 10.1007/978-3-319-47437-3_20
– start-page: 116
  issue: 4
  year: 2007
  ident: ref25
  article-title: Dialectal metaphors and cultural identity in verbal communication
  publication-title: J. Dalian Maritime Univ. (Social Sci. Edition)
– ident: ref26
  doi: 10.1080/0144929X.2020.1723701
– volume: 10
  start-page: 19
  issue: 10
  year: 1996
  ident: ref19
  article-title: The media equation: How people treat computers, television, and new media like real people
  publication-title: Cambridge, U.K.
– ident: ref37
  doi: 10.1007/s12369-008-0001-3
– ident: ref11
  doi: 10.1109/IROS.2009.5354116
– ident: ref5
  doi: 10.1016/j.jbusres.2022.03.087
– ident: ref13
  doi: 10.3390/su13179655
– ident: ref18
  doi: 10.1109/RO-MAN47096.2020.9223599
– ident: ref23
  doi: 10.4324/9781315703855
– ident: ref22
  doi: 10.1108/JPBM-05-2016-1199
– volume: 39
  start-page: 41
  issue: 1
  volume-title: J. Univ. Shanghai Sci. Technol.
  year: 2017
  ident: ref30
  article-title: A study of gender differences in code-switching between the standard language and its dialects
– ident: ref38
  doi: 10.1037/0033-295X.98.2.224
– ident: ref4
  doi: 10.3390/robotics10010047
– ident: ref2
  doi: 10.1007/s12369-020-00643-y
– ident: ref3
  doi: 10.1109/LRA.2021.3094779
– ident: ref10
  doi: 10.1109/RO-MAN47096.2020.9223432
– ident: ref27
  doi: 10.1109/HRI.2019.8673232
– ident: ref28
  doi: 10.1145/1463160.1463235
– ident: ref21
  doi: 10.14807/ijmp.v13i1.1555
– ident: ref15
  doi: 10.1111/ijcs.12755
– ident: ref6
  doi: 10.3390/s22030991
– ident: ref17
  doi: 10.1007/978-981-99-8718-4_7
– volume-title: Proc. Eleventh Int. Conf. Lang. Resour. Eval.
  year: 2018
  ident: ref33
  article-title: Effects of gender stereotypes on trust and likability in soken human-robot interaction
– ident: ref34
  doi: 10.1007/978-1-4419-1465-1_19
– ident: ref36
  doi: 10.1002/mar.21498
– ident: ref40
  doi: 10.1093/joc/50.1.46
– ident: ref39
  doi: 10.1016/s0065-2601(07)00002-0
– ident: ref29
  doi: 10.3389/frobt.2022.983955
– ident: ref16
  doi: 10.20965/jrm.2023.p0844
– ident: ref32
  doi: 10.1016/j.chb.2014.05.014
SSID ssj0001527395
Score 2.3022265
Snippet As artificial intelligence and robotics advance, social robots are increasingly integrated into service domains, necessitating strategies to enhance user...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 9064
SubjectTerms Affinity
Anthropomorphism
Artificial intelligence
Attraction
Cultural differences
Dialects
Gender
genderization
geo-gender affinity
Linguistics
recommendation acceptance
Recommender systems
Robotics
Robots
Social robots
Systematics
Training
Title Improving Social Robot Recommendation Acceptance Through Geo-Gender Affinity Construction
URI https://ieeexplore.ieee.org/document/11091400
https://www.proquest.com/docview/3246776410
Volume 10
WOSCitedRecordID wos001542439700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBZxGFUnlgYXCbOA_HY4RaGKBCVZHKFPkpdaBBtCCx8Ns5OwkFIQa2DM4luovj--y770PoIspEAvhGkUwoSWJuMyLCVJFUWsclw62KlBebYONxNpvx-7pZ3ffCGGN88Znpu0t_lq9L9eq2ygaOHRMAASD0TcZY1ay13lBxVGI8aY4iAz64neQAAGnSjxJOgzT8sfR4LZVfP2C_qoz2_vk--2i3Th9xXsX7AG2YxSHa-UYqeIQev_YJcNV7iyelLFfYAc0nMFiJKOFcuYIWF3M8rbR68LUpSSUth3Nr5zDZ37ET9GwoZtvoYTScXt2QWkCBKBqzFZFpKrJIAwRSlus4NIGUSgqqqRZShDHjUrreU0dDp4wSYSLjRLEoM5CHSa2iY9RalAtzgjC3FCwIbQDexGEANrWGQYJRm2lLow66bHxbPFc8GYXHFwEvIA6Fi0NRx6GD2s6X63G1Gzuo20SjqGfSsoCEL2UshWee_nHbGdp21qvCry5qgVPMOdpSb6v58qWHNu8-hj3_qXwCcty-VQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SBfXgs2K1ag5ePKTdzWYfOS6iVqxFSoV6CnlCD3bFVsF_bx5bq4gHb3vITpaZZJMvmfk-AM6TgqcW30hUcCkQoaZAPM4kyoRxXDLUyER6sYl8MCjGY_pQF6v7WhittU8-0x336O_yVSXf3FFZ17FjWkBgEfpqSgiOQ7nW8kjFkYnRdHEZGdFuf1haCIjTTpJSHGXxj8XHq6n8-gX7deV6-59ftAO26g0kLEPEd8GKnu6BzW-0gvvg6eukAIbqWzisRDWHDmo-W4NBRgmW0qW0uKjDUVDrgTe6QkFcDpbGTOx0_4BO0nNBMtsEj9dXo8seqiUUkMQknyORZbxIlAVB0lBFYh0JIQXHCisueExyKoSrPnVEdFJLHqeCpDJPCm13YkLJ5AA0ptVUHwJIDbYWuNIW4JA4sjaVso14jk2hDE5a4GLhW_YSmDKYRxgRZTYOzMWB1XFogabz5bJd7cYWaC-iweq5NGN2y5fleWb7PPrjtTOw3hvd91n_dnB3DDZcTyENrA0a1kH6BKzJ9_lk9nrqB8wnAA_Aaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Social+Robot+Recommendation+Acceptance+Through+Geo-Gender+Affinity+Construction&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Fu%2C+Changzeng&rft.au=Li%2C+Zihan&rft.au=Wang%2C+Songyang&rft.au=Ishiguro%2C+Hiroshi&rft.date=2025-09-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=10&rft.issue=9&rft.spage=9064&rft.epage=9071&rft_id=info:doi/10.1109%2FLRA.2025.3592061&rft.externalDocID=11091400
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon