Improving Social Robot Recommendation Acceptance Through Geo-Gender Affinity Construction
As artificial intelligence and robotics advance, social robots are increasingly integrated into service domains, necessitating strategies to enhance user acceptance of their recommendations. Prior work has explored how gendered appearance influences user acceptance, yet the role of linguistic featur...
Saved in:
| Published in: | IEEE robotics and automation letters Vol. 10; no. 9; pp. 9064 - 9071 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2377-3766, 2377-3766 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As artificial intelligence and robotics advance, social robots are increasingly integrated into service domains, necessitating strategies to enhance user acceptance of their recommendations. Prior work has explored how gendered appearance influences user acceptance, yet the role of linguistic features, such as regional dialects and gendered text, remains underexplored. Drawing on Social Influence Theory, we propose that linguistic similarity (e.g., dialect familiarity) and gendered communication styles may synergistically enhance attraction and identification, in turn boosting recommendation acceptance. To address this gap, we investigate three research questions: (1) How do regional dialects and gendered linguistic styles independently affect robot's attraction and identification (e.g., perceived robot likability, anthropomorphism, and intelligence)? (2) Does gendered text in robot speech enhance acceptance of recommendations? (3) To what extent do regional dialects and gendered styles interact to jointly shape outcomes? We introduce geo-gender affinity, a design principle combining regional dialects ("geo") and gendered linguistic features ("gender"), and test its effects via a 2 × 2 between-subjects experiment with 62 Chinese-speaking participants. Results demonstrate that regional dialects significantly heightened likability, anthropomorphism, and perceived intelligence (addressing RQ1), while gendered text improved recommendation acceptance (RQ2). Notably, the combination of dialects and gendered text revealed that geo-gender affinity amplified acceptance for perceiving linguistic elements as aligned with their identity (RQ3). These findings establish geo-gender affinity as a socially grounded framework for optimizing robot communication, offering practical implications for AI-driven services to enhance user engagement and trust. |
|---|---|
| AbstractList | As artificial intelligence and robotics advance, social robots are increasingly integrated into service domains, necessitating strategies to enhance user acceptance of their recommendations. Prior work has explored how gendered appearance influences user acceptance, yet the role of linguistic features, such as regional dialects and gendered text, remains underexplored. Drawing on Social Influence Theory, we propose that linguistic similarity (e.g., dialect familiarity) and gendered communication styles may synergistically enhance attraction and identification, in turn boosting recommendation acceptance. To address this gap, we investigate three research questions: (1) How do regional dialects and gendered linguistic styles independently affect robot's attraction and identification (e.g., perceived robot likability, anthropomorphism, and intelligence)? (2) Does gendered text in robot speech enhance acceptance of recommendations? (3) To what extent do regional dialects and gendered styles interact to jointly shape outcomes? We introduce geo-gender affinity, a design principle combining regional dialects ("geo") and gendered linguistic features ("gender"), and test its effects via a 2 × 2 between-subjects experiment with 62 Chinese-speaking participants. Results demonstrate that regional dialects significantly heightened likability, anthropomorphism, and perceived intelligence (addressing RQ1), while gendered text improved recommendation acceptance (RQ2). Notably, the combination of dialects and gendered text revealed that geo-gender affinity amplified acceptance for perceiving linguistic elements as aligned with their identity (RQ3). These findings establish geo-gender affinity as a socially grounded framework for optimizing robot communication, offering practical implications for AI-driven services to enhance user engagement and trust. |
| Author | Li, Zihan Wang, Songyang Fu, Changzeng Ishiguro, Hiroshi Yoshikawa, Yuichiro |
| Author_xml | – sequence: 1 givenname: Changzeng orcidid: 0000-0003-1083-9486 surname: Fu fullname: Fu, Changzeng email: fuchangzeng@qhd.neu.edu.cn organization: SSTC, Northeastern University, Qinhuangdao, China – sequence: 2 givenname: Zihan surname: Li fullname: Li, Zihan organization: SSTC, Northeastern University, Qinhuangdao, China – sequence: 3 givenname: Songyang surname: Wang fullname: Wang, Songyang organization: SSTC, Northeastern University, Qinhuangdao, China – sequence: 4 givenname: Hiroshi orcidid: 0000-0002-0805-7648 surname: Ishiguro fullname: Ishiguro, Hiroshi organization: Graduate School of Engineering Science, Osaka University, Osaka, Japan – sequence: 5 givenname: Yuichiro orcidid: 0000-0002-3484-0361 surname: Yoshikawa fullname: Yoshikawa, Yuichiro organization: Graduate School of Engineering Science, Osaka University, Osaka, Japan |
| BookMark | eNpNkE1LAzEQhoMoWGvvHjwEPG_NxybpHpeitVAQaj14Ckl2tt3SJjW7K_Tfm9KCnmYOzzvD-9yhax88IPRAyZhSUjwvluWYESbGXBSMSHqFBowrlXEl5fW__RaN2nZLCKGCKV6IAfqa7w8x_DR-jT-Ca8wOL4MNHV6CC_s9-Mp0TfC4dA4OnfEO8GoTQ7_e4BmEbJYAiLis68Y33RFPg2-72LtT5h7d1GbXwugyh-jz9WU1fcsW77P5tFxkjuWqy6yUZsKrQkhXF1VOgVjrrGEVq4w1NFeFtaIgqaUQDpyhwubCKT6BiaC2cnyIns53U4_vHtpOb0MffXqpOculUjKnJFHkTLkY2jZCrQ-x2Zt41JTok0OdHOqTQ31xmCKP50gDAH94YmlOCP8Fk5Fv1w |
| CODEN | IRALC6 |
| Cites_doi | 10.1108/IJCHM-12-2022-1523 10.1109/HRI.2019.8673222 10.1089/gg.2016.29002.nom 10.1108/JHTT-12-2023-0428 10.1007/s12369-023-01035-8 10.1007/s12369-018-0502-7 10.1177/1094670511414551 10.1016/j.ijhm.2022.103166 10.3200/SOCP.148.2.253-256 10.1007/978-3-319-47437-3_20 10.1080/0144929X.2020.1723701 10.1007/s12369-008-0001-3 10.1109/IROS.2009.5354116 10.1016/j.jbusres.2022.03.087 10.3390/su13179655 10.1109/RO-MAN47096.2020.9223599 10.4324/9781315703855 10.1108/JPBM-05-2016-1199 10.1037/0033-295X.98.2.224 10.3390/robotics10010047 10.1007/s12369-020-00643-y 10.1109/LRA.2021.3094779 10.1109/RO-MAN47096.2020.9223432 10.1109/HRI.2019.8673232 10.1145/1463160.1463235 10.14807/ijmp.v13i1.1555 10.1111/ijcs.12755 10.3390/s22030991 10.1007/978-981-99-8718-4_7 10.1007/978-1-4419-1465-1_19 10.1002/mar.21498 10.1093/joc/50.1.46 10.1016/s0065-2601(07)00002-0 10.3389/frobt.2022.983955 10.20965/jrm.2023.p0844 10.1016/j.chb.2014.05.014 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LRA.2025.3592061 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2377-3766 |
| EndPage | 9071 |
| ExternalDocumentID | 10_1109_LRA_2025_3592061 11091400 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62306068 funderid: 10.13039/501100001809 – fundername: Moonshot R&D grantid: JPMJMS2011 – fundername: Natural Science Foundation of Hebei Province, China grantid: F2024501002 |
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c247t-b66a83d956cf9d41e0bbcba2d2daba1479bb59010955ceca15b45c738e851bdc3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001542439700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2377-3766 |
| IngestDate | Sat Nov 22 13:40:28 EST 2025 Thu Nov 27 01:05:35 EST 2025 Wed Nov 26 07:22:47 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-b66a83d956cf9d41e0bbcba2d2daba1479bb59010955ceca15b45c738e851bdc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0805-7648 0000-0002-3484-0361 0000-0003-1083-9486 |
| PQID | 3246776410 |
| PQPubID | 4437225 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1109_LRA_2025_3592061 ieee_primary_11091400 proquest_journals_3246776410 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE robotics and automation letters |
| PublicationTitleAbbrev | LRA |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref11 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref18 Zhang (ref25) 2007 Kraus (ref33) 2018 ref24 ref23 ref26 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Jincheng (ref30) 2017; 39 ref40 Reeves (ref19) 1996; 10 |
| References_xml | – ident: ref14 doi: 10.1108/IJCHM-12-2022-1523 – ident: ref12 doi: 10.1109/HRI.2019.8673222 – ident: ref31 doi: 10.1089/gg.2016.29002.nom – ident: ref1 doi: 10.1108/JHTT-12-2023-0428 – ident: ref8 doi: 10.1007/s12369-023-01035-8 – ident: ref9 doi: 10.1007/s12369-018-0502-7 – ident: ref24 doi: 10.1177/1094670511414551 – ident: ref35 doi: 10.1016/j.ijhm.2022.103166 – ident: ref20 doi: 10.3200/SOCP.148.2.253-256 – ident: ref7 doi: 10.1007/978-3-319-47437-3_20 – start-page: 116 issue: 4 year: 2007 ident: ref25 article-title: Dialectal metaphors and cultural identity in verbal communication publication-title: J. Dalian Maritime Univ. (Social Sci. Edition) – ident: ref26 doi: 10.1080/0144929X.2020.1723701 – volume: 10 start-page: 19 issue: 10 year: 1996 ident: ref19 article-title: The media equation: How people treat computers, television, and new media like real people publication-title: Cambridge, U.K. – ident: ref37 doi: 10.1007/s12369-008-0001-3 – ident: ref11 doi: 10.1109/IROS.2009.5354116 – ident: ref5 doi: 10.1016/j.jbusres.2022.03.087 – ident: ref13 doi: 10.3390/su13179655 – ident: ref18 doi: 10.1109/RO-MAN47096.2020.9223599 – ident: ref23 doi: 10.4324/9781315703855 – ident: ref22 doi: 10.1108/JPBM-05-2016-1199 – volume: 39 start-page: 41 issue: 1 volume-title: J. Univ. Shanghai Sci. Technol. year: 2017 ident: ref30 article-title: A study of gender differences in code-switching between the standard language and its dialects – ident: ref38 doi: 10.1037/0033-295X.98.2.224 – ident: ref4 doi: 10.3390/robotics10010047 – ident: ref2 doi: 10.1007/s12369-020-00643-y – ident: ref3 doi: 10.1109/LRA.2021.3094779 – ident: ref10 doi: 10.1109/RO-MAN47096.2020.9223432 – ident: ref27 doi: 10.1109/HRI.2019.8673232 – ident: ref28 doi: 10.1145/1463160.1463235 – ident: ref21 doi: 10.14807/ijmp.v13i1.1555 – ident: ref15 doi: 10.1111/ijcs.12755 – ident: ref6 doi: 10.3390/s22030991 – ident: ref17 doi: 10.1007/978-981-99-8718-4_7 – volume-title: Proc. Eleventh Int. Conf. Lang. Resour. Eval. year: 2018 ident: ref33 article-title: Effects of gender stereotypes on trust and likability in soken human-robot interaction – ident: ref34 doi: 10.1007/978-1-4419-1465-1_19 – ident: ref36 doi: 10.1002/mar.21498 – ident: ref40 doi: 10.1093/joc/50.1.46 – ident: ref39 doi: 10.1016/s0065-2601(07)00002-0 – ident: ref29 doi: 10.3389/frobt.2022.983955 – ident: ref16 doi: 10.20965/jrm.2023.p0844 – ident: ref32 doi: 10.1016/j.chb.2014.05.014 |
| SSID | ssj0001527395 |
| Score | 2.3022265 |
| Snippet | As artificial intelligence and robotics advance, social robots are increasingly integrated into service domains, necessitating strategies to enhance user... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 9064 |
| SubjectTerms | Affinity Anthropomorphism Artificial intelligence Attraction Cultural differences Dialects Gender genderization geo-gender affinity Linguistics recommendation acceptance Recommender systems Robotics Robots Social robots Systematics Training |
| Title | Improving Social Robot Recommendation Acceptance Through Geo-Gender Affinity Construction |
| URI | https://ieeexplore.ieee.org/document/11091400 https://www.proquest.com/docview/3246776410 |
| Volume | 10 |
| WOSCitedRecordID | wos001542439700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBZxGFUnlgYXCbOA_HY4RaGKBCVZHKFPkpdaBBtCCx8Ns5OwkFIQa2DM4luovj--y770PoIspEAvhGkUwoSWJuMyLCVJFUWsclw62KlBebYONxNpvx-7pZ3ffCGGN88Znpu0t_lq9L9eq2ygaOHRMAASD0TcZY1ay13lBxVGI8aY4iAz64neQAAGnSjxJOgzT8sfR4LZVfP2C_qoz2_vk--2i3Th9xXsX7AG2YxSHa-UYqeIQev_YJcNV7iyelLFfYAc0nMFiJKOFcuYIWF3M8rbR68LUpSSUth3Nr5zDZ37ET9GwoZtvoYTScXt2QWkCBKBqzFZFpKrJIAwRSlus4NIGUSgqqqRZShDHjUrreU0dDp4wSYSLjRLEoM5CHSa2iY9RalAtzgjC3FCwIbQDexGEANrWGQYJRm2lLow66bHxbPFc8GYXHFwEvIA6Fi0NRx6GD2s6X63G1Gzuo20SjqGfSsoCEL2UshWee_nHbGdp21qvCry5qgVPMOdpSb6v58qWHNu8-hj3_qXwCcty-VQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SBfXgs2K1ag5ePKTdzWYfOS6iVqxFSoV6CnlCD3bFVsF_bx5bq4gHb3vITpaZZJMvmfk-AM6TgqcW30hUcCkQoaZAPM4kyoRxXDLUyER6sYl8MCjGY_pQF6v7WhittU8-0x336O_yVSXf3FFZ17FjWkBgEfpqSgiOQ7nW8kjFkYnRdHEZGdFuf1haCIjTTpJSHGXxj8XHq6n8-gX7deV6-59ftAO26g0kLEPEd8GKnu6BzW-0gvvg6eukAIbqWzisRDWHDmo-W4NBRgmW0qW0uKjDUVDrgTe6QkFcDpbGTOx0_4BO0nNBMtsEj9dXo8seqiUUkMQknyORZbxIlAVB0lBFYh0JIQXHCisueExyKoSrPnVEdFJLHqeCpDJPCm13YkLJ5AA0ptVUHwJIDbYWuNIW4JA4sjaVso14jk2hDE5a4GLhW_YSmDKYRxgRZTYOzMWB1XFogabz5bJd7cYWaC-iweq5NGN2y5fleWb7PPrjtTOw3hvd91n_dnB3DDZcTyENrA0a1kH6BKzJ9_lk9nrqB8wnAA_Aaw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Social+Robot+Recommendation+Acceptance+Through+Geo-Gender+Affinity+Construction&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Fu%2C+Changzeng&rft.au=Li%2C+Zihan&rft.au=Wang%2C+Songyang&rft.au=Ishiguro%2C+Hiroshi&rft.date=2025-09-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=10&rft.issue=9&rft.spage=9064&rft.epage=9071&rft_id=info:doi/10.1109%2FLRA.2025.3592061&rft.externalDocID=11091400 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |