Learning Deformable Linear Object Dynamics From a Single Trajectory
The dynamic manipulation of deformable objects poses a significant challenge in robotics. While model-based approaches for controlling such objects hold significant potential, their effectiveness hinges on the availability of an accurate and computationally efficient dynamics model. This work focuse...
Uloženo v:
| Vydáno v: | IEEE robotics and automation letters Ročník 10; číslo 7; s. 7635 - 7642 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2377-3766, 2377-3766 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The dynamic manipulation of deformable objects poses a significant challenge in robotics. While model-based approaches for controlling such objects hold significant potential, their effectiveness hinges on the availability of an accurate and computationally efficient dynamics model. This work focuses on sample-efficient learning of models to capture the dynamic behavior of deformable linear objects (DLOs). Inspired by the pseudo-rigid body method, we present a physics-informed neural ODE that approximates a DLO as a serial chain of rigid bodies interconnected by passive elastic joints. However, unlike traditional uniform spatial discretization and linear spring-damper joints, our approach involves learning-based discretization and nonlinear elastic joints that characterize interaction forces via a neural network. Through real-world and simulation experiments involving DLOs with markedly different physical properties, we demonstrate the model's ability to accurately predict DLO motion. |
|---|---|
| AbstractList | The dynamic manipulation of deformable objects poses a significant challenge in robotics. While model-based approaches for controlling such objects hold significant potential, their effectiveness hinges on the availability of an accurate and computationally efficient dynamics model. This work focuses on sample-efficient learning of models to capture the dynamic behavior of deformable linear objects (DLOs). Inspired by the pseudo-rigid body method, we present a physics-informed neural ODE that approximates a DLO as a serial chain of rigid bodies interconnected by passive elastic joints. However, unlike traditional uniform spatial discretization and linear spring-damper joints, our approach involves learning-based discretization and nonlinear elastic joints that characterize interaction forces via a neural network. Through real-world and simulation experiments involving DLOs with markedly different physical properties, we demonstrate the model's ability to accurately predict DLO motion. |
| Author | Swevers, Jan Mamedov, Shamil Geist, A. Rene Trimpe, Sebastian Viljoen, Ruan |
| Author_xml | – sequence: 1 givenname: Shamil orcidid: 0000-0002-5381-7976 surname: Mamedov fullname: Mamedov, Shamil email: shamilnmamedov@gmail.com organization: MECO Research Team, KU Leuven and Flanders Make@KU Leuven, Heverlee, Belgium – sequence: 2 givenname: A. Rene orcidid: 0000-0003-2551-2419 surname: Geist fullname: Geist, A. Rene organization: Institute for Data Science in Mechanical Engineering, RWTH Aachen University, Aachen, Germany – sequence: 3 givenname: Ruan orcidid: 0000-0001-7883-9381 surname: Viljoen fullname: Viljoen, Ruan organization: MECO Research Team, KU Leuven and Flanders Make@KU Leuven, Heverlee, Belgium – sequence: 4 givenname: Sebastian orcidid: 0000-0002-2785-2487 surname: Trimpe fullname: Trimpe, Sebastian organization: Institute for Data Science in Mechanical Engineering, RWTH Aachen University, Aachen, Germany – sequence: 5 givenname: Jan orcidid: 0000-0003-2034-5519 surname: Swevers fullname: Swevers, Jan organization: MECO Research Team, KU Leuven and Flanders Make@KU Leuven, Heverlee, Belgium |
| BookMark | eNpNkE1LAzEQhoMoWGvvHjwEPG_Nx2anOZbWqrBQ0HoO2e1EtnSTmrSH_ntTWtDLzDDzzMzLe0euffBIyANnY86Zfq4_pmPBhBpLBVAKfkUGQgIUEqrq-l99S0YpbRhjXAmQWg3IrEYbfee_6RxdiL1ttkjrzucuXTYbbPd0fvS279pEFzH01NLPTGdoFe1pHOLxntw4u004uuQh-Vq8rGZvRb18fZ9N66IVJewLi6WVKHHNmHOV4roFXDfK2WY9kaVoWu0AFNPCZYHCApbQZpFOQ9MgF1YOydP57i6GnwOmvdmEQ_T5pZGC64kWOWaKnak2hpQiOrOLXW_j0XBmTm6Z7JY5uWUubuWVx_NKh4h_OGcCKuDyF8rHZsI |
| CODEN | IRALC6 |
| Cites_doi | 10.1007/978-1-4899-7560-7 10.1177/0278364918779698 10.1007/978-3-319-76965-3 10.1109/LRA.2024.3357310 10.1109/IROS51168.2021.9636663 10.1007/978-94-007-0335-3 10.1016/j.robot.2022.104258 10.3389/frobt.2020.00082 10.1109/ICRA.2019.8793509 10.1145/1360612.1360662 10.1023/B:BITN.0000046811.70614.38 10.1007/s42235-024-00534-2 10.23919/ECC57647.2023.10178402 10.1016/j.neunet.2017.12.012 10.1109/TRO.2022.3231360 10.1109/LRA.2020.2969931 10.1007/s12532-018-0139-4 10.1109/ICRA48506.2021.9561636 10.1109/ROBOT.2005.1570251 10.1016/j.jmsy.2017.02.001 10.1109/TRO.2022.3200546 10.1109/IROS58592.2024.10802305 10.1109/LRA.2017.2729659 10.1109/IROS.2012.6386109 10.1115/1.4026300 10.1109/ICRA48506.2021.9560955 10.1109/ICRA46639.2022.9812189 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LRA.2025.3577421 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2377-3766 |
| EndPage | 7642 |
| ExternalDocumentID | 10_1109_LRA_2025_3577421 11027671 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: RWTH Aachen University grantid: S001821 funderid: 10.13039/501100007210 |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c247t-ae4a3e3ed00ff6519c7edb5fabd8342bc9f775092f0002a7e47c739f97bbe12a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001511061400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2377-3766 |
| IngestDate | Sat Nov 22 13:41:17 EST 2025 Sat Nov 29 07:50:37 EST 2025 Wed Aug 27 01:42:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-ae4a3e3ed00ff6519c7edb5fabd8342bc9f775092f0002a7e47c739f97bbe12a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7883-9381 0000-0003-2551-2419 0000-0002-2785-2487 0000-0002-5381-7976 0000-0003-2034-5519 |
| PQID | 3219892219 |
| PQPubID | 4437225 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_11027671 crossref_primary_10_1109_LRA_2025_3577421 proquest_journals_3219892219 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE robotics and automation letters |
| PublicationTitleAbbrev | LRA |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref34 ref15 ref37 ref14 ref36 ref31 Sutanto (ref35) 2020 ref11 ref10 Loshchilov (ref33) 2019 ref2 ref1 Buisson-Fenet (ref23) 2022 ref17 ref39 ref16 ref38 ref18 Bradbury (ref29) 2018 Wittbrodt (ref7) 2007 Rawlings (ref27) 2017; 2 Geist (ref40) 2024 ref26 ref20 Battaglia (ref13) 2016; 29 Chen (ref19) 2024 ref22 ref21 ref28 Kidger (ref32) 2021 ref8 ref9 ref4 Beintema (ref25) 2023 ref3 Chen (ref24) 2018; 31 ref6 ref5 Kidger (ref30) 2021 |
| References_xml | – ident: ref26 doi: 10.1007/978-1-4899-7560-7 – ident: ref2 doi: 10.1177/0278364918779698 – ident: ref28 doi: 10.1007/978-3-319-76965-3 – volume: 29 start-page: 4509 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2016 ident: ref13 article-title: Interaction networks for learning about objects, relations and physics – ident: ref15 doi: 10.1109/LRA.2024.3357310 – volume-title: Proc. Int. Conf. Learn. Representations year: 2019 ident: ref33 article-title: Decoupled weight decay regularization – ident: ref16 doi: 10.1109/IROS51168.2021.9636663 – ident: ref6 doi: 10.1007/978-94-007-0335-3 – ident: ref14 doi: 10.1016/j.robot.2022.104258 – ident: ref1 doi: 10.3389/frobt.2020.00082 – year: 2018 ident: ref29 article-title: JAX: Composable transformations of python NumPy programs – start-page: 1 volume-title: Proc. 11th Int. Conf. Learn. Representations year: 2023 ident: ref25 article-title: Continuous-time identification of dynamic state-space models by deep subspace encoding – start-page: 804 volume-title: Proc. Learn. Dyn. Control year: 2020 ident: ref35 article-title: Encoding physical constraints in differentiable newton-euler algorithm – ident: ref21 doi: 10.1109/ICRA.2019.8793509 – volume-title: Dynamics of Flexible Multibody Systems: Rigid Finite Element Method year: 2007 ident: ref7 – ident: ref20 doi: 10.1145/1360612.1360662 – ident: ref31 doi: 10.1023/B:BITN.0000046811.70614.38 – ident: ref17 doi: 10.1007/s42235-024-00534-2 – ident: ref39 doi: 10.23919/ECC57647.2023.10178402 – year: 2022 ident: ref23 article-title: Recognition models to learn dynamics from partial observations with neural odes publication-title: Trans. Mach. Learn. Res. – ident: ref36 doi: 10.1016/j.neunet.2017.12.012 – ident: ref11 doi: 10.1109/TRO.2022.3231360 – ident: ref3 doi: 10.1109/LRA.2020.2969931 – ident: ref38 doi: 10.1007/s12532-018-0139-4 – start-page: 15331 volume-title: Proc. 41st Int. Conf. Mach. Learn. year: 2024 ident: ref40 article-title: Learning with 3D rotations, a Hitchhiker’s guide to SO(3) – volume-title: Proc. Differentiable Program. Workshop Neural Inf. Process. Syst. year: 2021 ident: ref30 article-title: Equinox: Neural networks in JAX via callable PyTrees and filtered transformations – volume: 2 volume-title: Model Predictive Control: Theory, Computation, and Design year: 2017 ident: ref27 – ident: ref4 doi: 10.1109/ICRA48506.2021.9561636 – ident: ref9 doi: 10.1109/ROBOT.2005.1570251 – ident: ref10 doi: 10.1016/j.jmsy.2017.02.001 – ident: ref5 doi: 10.1109/TRO.2022.3200546 – ident: ref8 doi: 10.1109/IROS58592.2024.10802305 – year: 2021 ident: ref32 article-title: On neural differential equations – ident: ref34 doi: 10.1109/LRA.2017.2729659 – ident: ref37 doi: 10.1109/IROS.2012.6386109 – volume: 31 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2018 ident: ref24 article-title: Neural ordinary differential equations – ident: ref22 doi: 10.1115/1.4026300 – volume-title: Proc. 8th Annu. Conf. Robot Learn. year: 2024 ident: ref19 article-title: Differentiable discrete elastic rods for real-time modeling of deformable linear objects – ident: ref12 doi: 10.1109/ICRA48506.2021.9560955 – ident: ref18 doi: 10.1109/ICRA46639.2022.9812189 |
| SSID | ssj0001527395 |
| Score | 2.2960854 |
| Snippet | The dynamic manipulation of deformable objects poses a significant challenge in robotics. While model-based approaches for controlling such objects hold... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 7635 |
| SubjectTerms | and learning for soft robots Computational modeling control Deformable models Deformation Discretization Dynamics flexible robotics Formability Heuristic algorithms Kinematics Learning Mathematical models Model learning for control modeling Neural networks Numerical models Physical properties Predictive models Rigid structures Robotics Robots |
| Title | Learning Deformable Linear Object Dynamics From a Single Trajectory |
| URI | https://ieeexplore.ieee.org/document/11027671 https://www.proquest.com/docview/3219892219 |
| Volume | 10 |
| WOSCitedRecordID | wos001511061400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZoxQADZxGFUnlgYUgP24ntseohhlIQh9Qt8vGCQNCiHkgs_HZsJ1VBiIEliqKXKP7ivMvvfUboXCbEJJmxERXKk2pTpwcFVRGxbgYIw9pcB3b9IR-NxHgsb4pm9dALAwCh-Awa_jSs5dupWfpUWdOZKsIT3zFe4jzJm7XWCRVPJSbj1VJkSzaHtx0XAJK4QWPn5JD2D9MT9lL5pYCDVRns_vN99tBO4T7iTv6999EGTA7Q9jdSwUPULShTH3EPgkeqXwC7kNNdxdfap11wL9-Gfo4Hs-krVvjOSTshZ7eeQxL_o4IeBv377mVUbJUQGcL4IlLAFAUKttXKssR5ZYaD1XGmtBWUEW1kxr1vQDKvAhUHxo1DK5Nca2gTRY9QeTKdwDHCSkvB3FBVohizRGljBGTU2FgkIDRU0cUKxfQtZ8RIQyTRkqlDPPWIpwXiVVTxqK3lCsCqqLbCPS3-mXlKia_fIu548sdtp2jLPz2vlq2h8mK2hDO0ad4XT_NZHZWuPvv1MCm-AEqhtfI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yBfXg58Tp1By8eOjWJWmTHsfmmDin6ITdSpK-iKKb7EPwvzdJO6aIBy-llFfa_Jq-r7z3C0LnSUx0bHQWUCEdqTa1elBQGZDMzgChWYMrz67f4_2-GA6Tu6JZ3ffCAIAvPoOaO_Vr-dlYz12qrG5NFeGx6xhfjRgjYd6utUypODKxJFosRoZJvXfftCEgiWo0sm4OafwwPn43lV8q2NuVzvY_32gHbRUOJG7mX3wXrcBoD21-oxXcR62CNPUJt8H7pOoVsA067VV8q1ziBbfzjeinuDMZv2GJH6y0FbKW68Wn8T_L6LFzOWh1g2KzhEATxmeBBCYpUMjC0JjY-mWaQ6YiI1UmKCNKJ4Y774AYpwQlB8a1RcskXCloEEkPUGk0HsEhwlIlgtmhylgylhGptBZgqM4iEYNQUEEXCxTT95wTI_WxRJikFvHUIZ4WiFdQ2aG2lCsAq6DqAve0-GumKSWugovY49Eft52h9e7gppf2rvrXx2jDPSmvna2i0mwyhxO0pj9mz9PJqZ8aX5w9uAg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Deformable+Linear+Object+Dynamics+From+a+Single+Trajectory&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Mamedov%2C+Shamil&rft.au=Geist%2C+A+Rene&rft.au=Viljoen%2C+Ruan&rft.au=Trimpe%2C+Sebastian&rft.date=2025-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=10&rft.issue=12&rft.spage=7635&rft.epage=7642&rft_id=info:doi/10.1109%2FLRA.2025.3577421&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |