A Many-Objective Diversity-Guided Differential Evolution Algorithm for Multi-Label Feature Selection in High-Dimensional Datasets

Multi-label classification (MLC) is crucial as it allows for a more nuanced and realistic representation of complex real-world scenarios, where instances may belong to multiple categories simultaneously, providing a comprehensive understanding of the data. Effective feature selection in MLC is param...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on emerging topics in computational intelligence Jg. 9; H. 2; S. 1226 - 1237
Hauptverfasser: Hancer, Emrah, Xue, Bing, Zhang, Mengjie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2471-285X, 2471-285X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Multi-label classification (MLC) is crucial as it allows for a more nuanced and realistic representation of complex real-world scenarios, where instances may belong to multiple categories simultaneously, providing a comprehensive understanding of the data. Effective feature selection in MLC is paramount as it cannot only enhance model efficiency and interpretability but also mitigate the curse of dimensionality, ensuring more accurate and streamlined predictions for complex, multi-label data. Despite the proven efficacy of evolutionary computation (EC) techniques in enhancing feature selection for multi-label datasets, research on feature selection in MLC remains sparse in the domain of multi- and many-objective optimization. This paper proposes a many-objective differential evolution algorithm called MODivDE for feature selection in high-dimensional MLC tasks. The MODivDE algorithm involves multiple improvements and innovations in quality indicator-based selection, logic-based search strategy, and diversity-based archive update. The results demonstrate the exceptional performance of the MODivDE algorithm across a diverse range of high-dimensional datasets, surpassing recently introduced many-objective and conventional multi-label feature selection algorithms. The advancements in MODivDE collectively contribute to significantly improved accuracy, efficiency, and interpretability compared to state-of-the-art methods in the realm of multi-label feature selection.
AbstractList Multi-label classification (MLC) is crucial as it allows for a more nuanced and realistic representation of complex real-world scenarios, where instances may belong to multiple categories simultaneously, providing a comprehensive understanding of the data. Effective feature selection in MLC is paramount as it cannot only enhance model efficiency and interpretability but also mitigate the curse of dimensionality, ensuring more accurate and streamlined predictions for complex, multi-label data. Despite the proven efficacy of evolutionary computation (EC) techniques in enhancing feature selection for multi-label datasets, research on feature selection in MLC remains sparse in the domain of multi- and many-objective optimization. This paper proposes a many-objective differential evolution algorithm called MODivDE for feature selection in high-dimensional MLC tasks. The MODivDE algorithm involves multiple improvements and innovations in quality indicator-based selection, logic-based search strategy, and diversity-based archive update. The results demonstrate the exceptional performance of the MODivDE algorithm across a diverse range of high-dimensional datasets, surpassing recently introduced many-objective and conventional multi-label feature selection algorithms. The advancements in MODivDE collectively contribute to significantly improved accuracy, efficiency, and interpretability compared to state-of-the-art methods in the realm of multi-label feature selection.
Author Xue, Bing
Zhang, Mengjie
Hancer, Emrah
Author_xml – sequence: 1
  givenname: Emrah
  orcidid: 0000-0002-3213-5191
  surname: Hancer
  fullname: Hancer, Emrah
  email: emrah.hancer@ecs.vuw.ac.nz
  organization: Center for Data Science and Artificial Intelligence, Victoria University of Wellington, Wellington, New Zealand
– sequence: 2
  givenname: Bing
  orcidid: 0000-0002-4865-8026
  surname: Xue
  fullname: Xue, Bing
  organization: Center for Data Science and Artificial Intelligence, Victoria University of Wellington, Wellington, New Zealand
– sequence: 3
  givenname: Mengjie
  orcidid: 0000-0003-4463-9538
  surname: Zhang
  fullname: Zhang, Mengjie
  organization: Center for Data Science and Artificial Intelligence, Victoria University of Wellington, Wellington, New Zealand
BookMark eNpNUE1rAjEUDMVCrfUPlB4CPa9NshuTPYrfoHiohd6WuPuikXXXJlnBY_95Y_Xg5b3HMDPMm2fUquoKEHqlpEcpST_W4_Vw3mOE8V7MWSoT8oDaLBE0YpJ_t-7uJ9R1bk8IYSmnMU_a6HeAl6o6R6vNHnJvToBHYVhn_DmaNqaAIgBag4XKG1Xi8akuG2_qCg_KbW2N3x2wri1eNqU30UJtoMQTUL6xgD-hvHgGrqnwzGx30cgcoHIBCU4j5ZUD717Qo1alg-5td9DXJDw0ixar6Xw4WER5iO8jxYp-n0lgGw5JAZchcq0J1UxwxqUWooh1LjQUOYk5ByJzokSiGck3oi_jDnq_-h5t_dOA89m-bmxI4rKYSpr0ZRongcWurNzWzlnQ2dGag7LnjJLs0nb233Z2aTu7tR1Eb1eRAYA7geSJFGn8B8klf3I
CODEN ITETCU
Cites_doi 10.1109/TAI.2024.3380590
10.1016/j.eswa.2022.118861
10.1007/s00521-022-07407-x
10.1007/978-3-540-30217-9_84
10.1080/18756891.2015.1129587
10.1016/j.swevo.2012.09.002
10.1109/SMC.2019.8914005
10.1016/j.swevo.2022.101055
10.1145/3583131.3590373
10.1007/s10462-019-09800-w
10.1016/j.patcog.2019.06.003
10.1007/978-3-642-37140-0_34
10.1016/j.eswa.2019.113024
10.1109/TCYB.2022.3218345
10.1007/s13042-020-01156-w
10.1016/j.knosys.2020.106456
10.1023/A:1008202821328
10.1109/TEVC.2014.2350987
10.1109/TCYB.2020.3015756
10.1016/j.ins.2021.09.052
10.1109/ICDMW53433.2021.00106
10.1016/j.knosys.2021.106966
10.1016/j.asoc.2011.08.038
10.1109/TEVC.2016.2631279
10.1109/CEC45853.2021.9504960
10.1016/j.knosys.2023.111008
10.1007/s10489-020-01785-2
10.1016/j.eswa.2021.114817
10.1016/j.patcog.2017.01.014
10.1109/TEVC.2013.2281535
10.1088/1742-6596/2504/1/012007
10.1016/j.knosys.2022.108259
10.3390/sym13020322
10.1088/1742-6596/1288/1/012057
10.1038/s41598-017-00416-0
10.7717/peerj-cs.261
10.19113/sdufenbed.635465
10.1109/IJCNN.2015.7280373
10.1016/j.patcog.2006.12.019
10.1016/j.knosys.2019.105285
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TETCI.2025.3529840
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2471-285X
EndPage 1237
ExternalDocumentID 10_1109_TETCI_2025_3529840
10854879
Genre orig-research
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
ABAZT
L7M
ID FETCH-LOGICAL-c247t-a2d6628e2b5e4de5e4d7cff01f275258f77d3fc7fedc0355e08c0a74f20cb7683
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001411866800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2471-285X
IngestDate Mon Jun 30 12:03:52 EDT 2025
Sat Nov 29 08:06:49 EST 2025
Wed Dec 10 09:50:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-a2d6628e2b5e4de5e4d7cff01f275258f77d3fc7fedc0355e08c0a74f20cb7683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4865-8026
0000-0003-4463-9538
0000-0002-3213-5191
PQID 3181468934
PQPubID 4437216
PageCount 12
ParticipantIDs proquest_journals_3181468934
crossref_primary_10_1109_TETCI_2025_3529840
ieee_primary_10854879
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref1
ref17
ref39
Spolar (ref2) 2015; 8
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref22
ref21
Moyano (ref30) 2017
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
Wu (ref41) 2017; 70
ref6
ref5
ref40
References_xml – ident: ref26
  doi: 10.1109/TAI.2024.3380590
– ident: ref40
  doi: 10.1016/j.eswa.2022.118861
– ident: ref16
  doi: 10.1007/s00521-022-07407-x
– ident: ref29
  doi: 10.1007/978-3-540-30217-9_84
– volume: 8
  start-page: 3
  issue: sup2
  year: 2015
  ident: ref2
  article-title: Feature selection for multi-label learning: A systematic literature review and some experimental evaluations
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.1080/18756891.2015.1129587
– ident: ref28
  doi: 10.1016/j.swevo.2012.09.002
– ident: ref34
  doi: 10.1109/SMC.2019.8914005
– ident: ref35
  doi: 10.1016/j.swevo.2022.101055
– ident: ref6
  doi: 10.1145/3583131.3590373
– ident: ref7
  doi: 10.1007/s10462-019-09800-w
– ident: ref38
  doi: 10.1016/j.patcog.2019.06.003
– ident: ref9
  doi: 10.1007/978-3-642-37140-0_34
– ident: ref37
  doi: 10.1016/j.eswa.2019.113024
– ident: ref42
  doi: 10.1109/TCYB.2022.3218345
– ident: ref18
  doi: 10.1007/s13042-020-01156-w
– ident: ref5
  doi: 10.1016/j.knosys.2020.106456
– ident: ref12
  doi: 10.1023/A:1008202821328
– ident: ref32
  doi: 10.1109/TEVC.2014.2350987
– ident: ref15
  doi: 10.1109/TCYB.2020.3015756
– ident: ref36
  doi: 10.1016/j.ins.2021.09.052
– volume: 70
  start-page: 3780
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  year: 2017
  ident: ref41
  article-title: A unified view of multi-label performance measures
– ident: ref21
  doi: 10.1109/ICDMW53433.2021.00106
– ident: ref25
  doi: 10.1016/j.knosys.2021.106966
– ident: ref27
  doi: 10.1016/j.asoc.2011.08.038
– year: 2017
  ident: ref30
  article-title: Multi-label classification dataset repository
– ident: ref33
  doi: 10.1109/TEVC.2016.2631279
– ident: ref22
  doi: 10.1109/CEC45853.2021.9504960
– ident: ref11
  doi: 10.1016/j.knosys.2023.111008
– ident: ref24
  doi: 10.1007/s10489-020-01785-2
– ident: ref14
  doi: 10.1016/j.eswa.2021.114817
– ident: ref39
  doi: 10.1016/j.patcog.2017.01.014
– ident: ref31
  doi: 10.1109/TEVC.2013.2281535
– ident: ref3
  doi: 10.1088/1742-6596/2504/1/012007
– ident: ref10
  doi: 10.1016/j.knosys.2022.108259
– ident: ref4
  doi: 10.3390/sym13020322
– ident: ref8
  doi: 10.1088/1742-6596/1288/1/012057
– ident: ref19
  doi: 10.1038/s41598-017-00416-0
– ident: ref20
  doi: 10.7717/peerj-cs.261
– ident: ref13
  doi: 10.19113/sdufenbed.635465
– ident: ref17
  doi: 10.1109/IJCNN.2015.7280373
– ident: ref1
  doi: 10.1016/j.patcog.2006.12.019
– ident: ref23
  doi: 10.1016/j.knosys.2019.105285
SSID ssj0002951354
Score 2.294121
Snippet Multi-label classification (MLC) is crucial as it allows for a more nuanced and realistic representation of complex real-world scenarios, where instances may...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1226
SubjectTerms Accuracy
Algorithms
Classification algorithms
Computational modeling
Convergence
Datasets
differential evolution
Effectiveness
Evolutionary algorithms
Evolutionary computation
Feature extraction
Feature selection
Labels
Linear programming
multi-label classification
Multi-label feature selection
Multiple objective analysis
Optimization
Search problems
Vectors
Title A Many-Objective Diversity-Guided Differential Evolution Algorithm for Multi-Label Feature Selection in High-Dimensional Datasets
URI https://ieeexplore.ieee.org/document/10854879
https://www.proquest.com/docview/3181468934
Volume 9
WOSCitedRecordID wos001411866800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5g4sCFhwAxXsqBGwqkadq0x4kxQOIl8RC3qkkcGBob2rrd-ec4aYeQEAcuVVWlVWXH9mfHD0IOlbZcgUPtF4FkUivN8hQEi6xGcA9OpqF98dOVurnJnp_zu6ZYPdTCAEBIPoNjfxvO8u3ITH2o7MRnyiPAzhfJolJpXaz1HVARiBXiRM4LY3h-8nD2cHqJLqBIjhFm5JkPcPwwPmGayi8VHOxKb_Wff7RGVhoASTs1x9fJAgw3yGeHXqNUs1v9Visw2p3nW7Dzad-CxQf1JBSU6AE9mzU7jnYGL6Nxv3p9p4heaSjHZVelhgH14HA6BnofJuX4tf0h9WkhrOsnAtTdPGi3rNAOVpNN8thDQlywZrgCM0KqipXCpqnIQOgEpAV_UcY5HjmhEpFkTikbO6McWMMRlADPDC-VdIIbjT5KvEVaw9EQtgl1kU5dVKbKGUB_Ky9LJzNnUNRLpWLB2-RoTvXio-6hUQTfg-dF4FHheVQ0PGqTTU_nHytrErfJ3pxTRSNnkwI1kq8dy2O588dru2TZf71OttkjrWo8hX2yZGZVfzI-CFvoCw4yyFw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELZYWGm58NCyojx94IYMjuPEybGivEQpSNtF3KLYHkNRaVGbcuefM3ZShIT2wCWKIkeJZjwz34znQciB0pYrcKj9IpBMaqVZnoJgkdUI7sHJNLQvvuuqXi-7v89vm2L1UAsDACH5DI78bTjLt2Mz86GyY58pjwA7_0GW_OisplzrI6QiEC3EiZyXxvD8uH_aP7lEJ1AkRwg08syHOD6ZnzBP5YsSDpblbPWb_7RGVhoISds1z9fJAox-k7c2vUa5Zjf6qVZhtDPPuGDns4EFiw_qWSgo00N6-trsOdoePowng-rxmSJ-paEgl3VLDUPq4eFsAvRvmJXj1w5G1CeGsI6fCVD386CdskJLWE03yL8zJMQFa8YrMCOkqlgpbJqKDIROQFrwF2Wc45ETKhFJ5pSysTPKgTUcYQnwzPBSSSe40eilxH_I4mg8gk1CXaRTF5WpcgbQ48rL0snMGRT2UqlY8BY5nFO9eKm7aBTB--B5EXhUeB4VDY9aZMPT-dPKmsQtsjPnVNFI2rRAneSrx_JYbv3ntX3y66J_3S26l72rbbLsv1Sn3uyQxWoyg13y07xWg-lkL2ynd6Tuy6U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Many-Objective+Diversity-Guided+Differential+Evolution+Algorithm+for+Multi-Label+Feature+Selection+in+High-Dimensional+Datasets&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Hancer%2C+Emrah&rft.au=Xue%2C+Bing&rft.au=Zhang%2C+Mengjie&rft.date=2025-04-01&rft.pub=IEEE&rft.eissn=2471-285X&rft.volume=9&rft.issue=2&rft.spage=1226&rft.epage=1237&rft_id=info:doi/10.1109%2FTETCI.2025.3529840&rft.externalDocID=10854879
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon