Modeling and multi-objective optimization of electrified ammonia decomposition: Improvement of performance and thermal behavior
Uloženo v:
| Vydáno v: | Fuel (Guildford) Ročník 358; s. 130243 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
15.02.2024
|
| ISSN: | 0016-2361 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| ArticleNumber | 130243 |
|---|---|
| Author | Yoon, Ha-Jun Lee, Joo-Sung Cherif, Ali Zarei, Mohammadamin Lee, Chul-Jin |
| Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0001-8376-2593 surname: Cherif fullname: Cherif, Ali – sequence: 2 givenname: Mohammadamin surname: Zarei fullname: Zarei, Mohammadamin – sequence: 3 givenname: Joo-Sung surname: Lee fullname: Lee, Joo-Sung – sequence: 4 givenname: Ha-Jun surname: Yoon fullname: Yoon, Ha-Jun – sequence: 5 givenname: Chul-Jin surname: Lee fullname: Lee, Chul-Jin |
| BookMark | eNp9kMtOwzAQRb0oEm3hB1j5BxL8SuKwQxWPSkVsYB25zpg6iu3IcSvBhl-naVmxYDUa3XtmpLNAMx88IHRDSU4JLW-73OyhzxlhPKecMMFnaE6OScZ4SS_RYhw7QkglCzFH3y-hhd76D6x8i92-TzYL2w50sgfAYUjW2S-VbPA4GAz9MYjWWGixci54q3ALOrghjHYq3eG1G2I4gAOfJmKAaEJ0yms4fUg7OG493sJOHWyIV-jCqH6E69-5RO-PD2-r52zz-rRe3W8yzUSVstrwopZQUK55wUpVVgaEEYVSgukK6pJVXNSgWlMDbwvNq60spax0IShI2fIlYue7OoZxjGCaIVqn4mdDSTNpa7pm0tZM2pqztiMk_0DappOMFJXt_0N_ALN0fCI |
| CitedBy_id | crossref_primary_10_1016_j_nxener_2025_100324 crossref_primary_10_1016_j_ijhydene_2024_12_482 crossref_primary_10_1016_j_enconman_2025_119550 crossref_primary_10_1016_j_energy_2025_134566 crossref_primary_10_1016_j_rser_2025_115848 crossref_primary_10_1016_j_rser_2025_116134 crossref_primary_10_1016_j_renene_2024_121433 crossref_primary_10_1016_j_apenergy_2025_126099 crossref_primary_10_1016_j_ces_2025_122403 |
| Cites_doi | 10.1016/j.ijhydene.2021.02.218 10.1016/j.jpowsour.2018.03.043 10.1016/j.applthermaleng.2022.119140 10.1023/B:CATL.0000030108.50691.d4 10.1016/j.ijhydene.2021.12.250 10.1002/er.4930 10.1021/acssuschemeng.7b03719 10.1016/j.jpowsour.2009.08.024 10.1002/0471238961.0113131503262116.a01.pub4 10.1016/j.ijhydene.2018.06.121 10.1016/j.fuel.2022.124384 10.1016/j.apenergy.2021.118158 10.1016/j.ijhydene.2018.02.109 10.1016/j.enconman.2022.115312 10.1126/science.aaw8775 10.1016/j.cej.2021.131509 10.1016/j.coche.2020.100667 10.1016/j.fuel.2022.125094 10.1016/j.energy.2022.125209 10.1016/j.rser.2021.111772 10.1016/j.cej.2020.127310 10.1016/j.ijhydene.2021.04.032 10.1016/j.rser.2022.112556 10.1016/j.apcatb.2017.12.039 10.1016/j.cej.2021.128595 10.1016/j.jksues.2016.01.002 10.1016/j.apenergy.2018.09.138 10.1016/j.pecs.2018.07.001 10.1016/j.egypro.2019.01.668 10.1016/j.fuel.2020.119111 10.1002/er.7750 10.1016/j.egyr.2022.03.152 10.1016/j.ijhydene.2019.01.132 10.1016/S0926-860X(01)00941-3 10.3390/pr9122275 10.1016/j.ijhydene.2021.01.214 10.1016/j.cej.2021.130802 10.1016/j.ijhydene.2020.01.145 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.fuel.2023.130243 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_fuel_2023_130243 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 8WZ 9DU 9JN A6W AABNK AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AATTM AAXKI AAXUO AAYWO AAYXX ABDEX ABEFU ABFNM ABJNI ABMAC ABNUV ABWVN ABXDB ACDAQ ACIWK ACLOT ACNCT ACNNM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADECG ADEWK ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFRAH AFTJW AFXIZ AFZHZ AGHFR AGQPQ AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKIFW AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CITATION CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RNS ROL RPZ SAC SCB SDF SDG SDP SES SEW SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ VH1 WH7 WUQ XPP ZMT ZY4 ~02 ~G- ~HD |
| ID | FETCH-LOGICAL-c247t-9f3598e513c3526a67fe4f45aa42c7e9627349eadf9e3d5c37b86887c541e88d3 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001108620600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0016-2361 |
| IngestDate | Sat Nov 29 07:31:08 EST 2025 Tue Nov 18 22:39:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c247t-9f3598e513c3526a67fe4f45aa42c7e9627349eadf9e3d5c37b86887c541e88d3 |
| ORCID | 0000-0001-8376-2593 |
| ParticipantIDs | crossref_primary_10_1016_j_fuel_2023_130243 crossref_citationtrail_10_1016_j_fuel_2023_130243 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-15 |
| PublicationDateYYYYMMDD | 2024-02-15 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Fuel (Guildford) |
| PublicationYear | 2024 |
| References | Alagharu (10.1016/j.fuel.2023.130243_b0115) 2010; 195 Ikäheimo (10.1016/j.fuel.2023.130243_b0030) 2018; 43 Sittichompoo (10.1016/j.fuel.2023.130243_b0140) 2021; 285 Luo (10.1016/j.fuel.2023.130243_b0120) 2022; 307 Abashar (10.1016/j.fuel.2023.130243_b0145) 2019; 44 Zhou (10.1016/j.fuel.2023.130243_b0065) 2019; 158 Wismann (10.1016/j.fuel.2023.130243_b0110) 2021; 425 10.1016/j.fuel.2023.130243_b0095 10.1016/j.fuel.2023.130243_b0050 Mukherjee (10.1016/j.fuel.2023.130243_b0080) 2018; 226 Kim (10.1016/j.fuel.2023.130243_b0170) 2022; 260 Pinzón (10.1016/j.fuel.2023.130243_b0185) 2022; 323 Abashar (10.1016/j.fuel.2023.130243_b0160) 2018; 30 Cherif (10.1016/j.fuel.2023.130243_b0195) 2022; 47 Kojima (10.1016/j.fuel.2023.130243_b0020) 2020; 45 Engelbrecht (10.1016/j.fuel.2023.130243_b0190) 2018; 386 Alqahtani (10.1016/j.fuel.2023.130243_b0150) 2021; 9 Perna (10.1016/j.fuel.2023.130243_b0125) 2018; 231 Cherif (10.1016/j.fuel.2023.130243_b0090) 2021 Schumacher (10.1016/j.fuel.2023.130243_b0180) 2019; 44 Zhiqiang (10.1016/j.fuel.2023.130243_b0075) 2022; 326 Berstad (10.1016/j.fuel.2023.130243_b0010) 2022; 154 Xie (10.1016/j.fuel.2023.130243_b0155) 2022; 8 Agreement (10.1016/j.fuel.2023.130243_b0005) 2016; 55 Juangsa (10.1016/j.fuel.2023.130243_b0040) 2021; 46 Cherif (10.1016/j.fuel.2023.130243_b0165) 2022 Palys (10.1016/j.fuel.2023.130243_b0055) 2021; 31 Maleki (10.1016/j.fuel.2023.130243_b0175) 2021; 411 Badakhsh (10.1016/j.fuel.2023.130243_b0130) 2021; 426 Cherif (10.1016/j.fuel.2023.130243_b0200) 2022; 217 Arnaiz del Pozo (10.1016/j.fuel.2023.130243_b0035) 2022; 255 Chellappa (10.1016/j.fuel.2023.130243_b0210) 2002; 227 10.1016/j.fuel.2023.130243_b0045 Mukelabai (10.1016/j.fuel.2023.130243_b0135) 2021; 46 Cherif (10.1016/j.fuel.2023.130243_b0085) 2021; 46 Valera-Medina (10.1016/j.fuel.2023.130243_b0025) 2018; 69 Hosseini (10.1016/j.fuel.2023.130243_b0015) 2020; 44 Xu (10.1016/j.fuel.2023.130243_b0060) 2019; 25 Wismann (10.1016/j.fuel.2023.130243_b0105) 2019; 364 Morlanés (10.1016/j.fuel.2023.130243_b0070) 2021; 408 Lee (10.1016/j.fuel.2023.130243_b0100) 2022; 165 Ganley (10.1016/j.fuel.2023.130243_b0205) 2004; 96 |
| References_xml | – volume: 46 start-page: 18546 year: 2021 ident: 10.1016/j.fuel.2023.130243_b0135 article-title: A novel integration of a green power-to-ammonia to power system: reversible solid oxide fuel cell for hydrogen and power production coupled with an ammonia synthesis unit publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.02.218 – volume: 386 start-page: 47 year: 2018 ident: 10.1016/j.fuel.2023.130243_b0190 article-title: A highly efficient autothermal microchannel reactor for ammonia decomposition: analysis of hydrogen production in transient and steady-state regimes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.03.043 – volume: 217 year: 2022 ident: 10.1016/j.fuel.2023.130243_b0200 article-title: Novel design and multi-objective optimization of autothermal steam methane reformer to enhance hydrogen production and thermal matching publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2022.119140 – volume: 96 start-page: 117 year: 2004 ident: 10.1016/j.fuel.2023.130243_b0205 article-title: A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia publication-title: Catal Lett doi: 10.1023/B:CATL.0000030108.50691.d4 – start-page: 145 year: 2021 ident: 10.1016/j.fuel.2023.130243_b0090 article-title: Optimization of the Ni/Al2O3 and Pt/Al2O3 catalysts load in autothermal steam methane reforming – volume: 47 start-page: 9127 year: 2022 ident: 10.1016/j.fuel.2023.130243_b0195 article-title: Modeling and simulation of steam methane reforming and methane combustion over continuous and segmented catalyst beds in autothermal reactor publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.12.250 – volume: 44 start-page: 4110 year: 2020 ident: 10.1016/j.fuel.2023.130243_b0015 article-title: Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy publication-title: Int J Energy Res doi: 10.1002/er.4930 – ident: 10.1016/j.fuel.2023.130243_b0045 doi: 10.1021/acssuschemeng.7b03719 – volume: 195 start-page: 829 year: 2010 ident: 10.1016/j.fuel.2023.130243_b0115 article-title: Analysis of ammonia decomposition reactor to generate hydrogen for fuel cell applications publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.08.024 – ident: 10.1016/j.fuel.2023.130243_b0050 doi: 10.1002/0471238961.0113131503262116.a01.pub4 – volume: 43 start-page: 17295 year: 2018 ident: 10.1016/j.fuel.2023.130243_b0030 article-title: Power-to-ammonia in future North European 100 % renewable power and heat system publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.06.121 – volume: 323 year: 2022 ident: 10.1016/j.fuel.2023.130243_b0185 article-title: Self-combustion Ni and Co-based perovskites as catalyst precursors for ammonia decomposition. Effect of Ce and Mg doping publication-title: Fuel doi: 10.1016/j.fuel.2022.124384 – ident: 10.1016/j.fuel.2023.130243_b0095 – volume: 307 year: 2022 ident: 10.1016/j.fuel.2023.130243_b0120 article-title: Optimized coupling of ammonia decomposition and electrochemical oxidation in a tubular direct ammonia solid oxide fuel cell for high-efficiency power generation publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.118158 – volume: 44 start-page: 82 year: 2019 ident: 10.1016/j.fuel.2023.130243_b0145 article-title: The impact of ammonia feed distribution on the performance of a fixed bed membrane reactor for ammonia decomposition to ultra-pure hydrogen publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.02.109 – volume: 55 start-page: 743 year: 2016 ident: 10.1016/j.fuel.2023.130243_b0005 publication-title: Int'l Legal Materials – volume: 255 year: 2022 ident: 10.1016/j.fuel.2023.130243_b0035 article-title: Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2022.115312 – volume: 364 start-page: 756 year: 2019 ident: 10.1016/j.fuel.2023.130243_b0105 article-title: Electrified methane reforming: a compact approach to greener industrial hydrogen production publication-title: Science doi: 10.1126/science.aaw8775 – volume: 425 year: 2021 ident: 10.1016/j.fuel.2023.130243_b0110 article-title: Electrified methane reforming: elucidating transient phenomena publication-title: Chem Eng J doi: 10.1016/j.cej.2021.131509 – volume: 31 year: 2021 ident: 10.1016/j.fuel.2023.130243_b0055 article-title: Renewable ammonia for sustainable energy and agriculture: vision and systems engineering opportunities publication-title: Curr Opin Chem Eng doi: 10.1016/j.coche.2020.100667 – volume: 326 year: 2022 ident: 10.1016/j.fuel.2023.130243_b0075 article-title: Catalytic ammonia decomposition to COx-free hydrogen over ruthenium catalyst supported on alkali silicates publication-title: Fuel doi: 10.1016/j.fuel.2022.125094 – volume: 260 year: 2022 ident: 10.1016/j.fuel.2023.130243_b0170 article-title: Highly selective Pd composite membrane on porous metal support for high-purity hydrogen production through effective ammonia decomposition publication-title: Energy doi: 10.1016/j.energy.2022.125209 – volume: 154 year: 2022 ident: 10.1016/j.fuel.2023.130243_b0010 article-title: Liquid hydrogen as prospective energy carrier: a brief review and discussion of underlying assumptions applied in value chain analysis publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.111772 – volume: 408 year: 2021 ident: 10.1016/j.fuel.2023.130243_b0070 article-title: A technological roadmap to the ammonia energy economy: current state and missing technologies publication-title: Chem Eng J doi: 10.1016/j.cej.2020.127310 – volume: 46 start-page: 37521 year: 2021 ident: 10.1016/j.fuel.2023.130243_b0085 article-title: Numerical investigation of hydrogen production via autothermal reforming of steam and methane over Ni/Al2O3 and Pt/Al2O3 patterned catalytic layers publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.04.032 – volume: 165 year: 2022 ident: 10.1016/j.fuel.2023.130243_b0100 article-title: Large-scale overseas transportation of hydrogen: comparative techno-economic and environmental investigation publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2022.112556 – volume: 226 start-page: 162 year: 2018 ident: 10.1016/j.fuel.2023.130243_b0080 article-title: Low-temperature ammonia decomposition catalysts for hydrogen generation publication-title: Appl Catal B doi: 10.1016/j.apcatb.2017.12.039 – volume: 411 year: 2021 ident: 10.1016/j.fuel.2023.130243_b0175 article-title: Kinetic assessment of H2 production from NH3 decomposition over CoCeAlO catalyst in a microreactor: experiments and CFD modelling publication-title: Chem Eng J doi: 10.1016/j.cej.2021.128595 – volume: 30 start-page: 2 year: 2018 ident: 10.1016/j.fuel.2023.130243_b0160 article-title: Ultra-clean hydrogen production by ammonia decomposition publication-title: J King Saud Univ - Eng Sci doi: 10.1016/j.jksues.2016.01.002 – volume: 231 start-page: 1216 year: 2018 ident: 10.1016/j.fuel.2023.130243_b0125 article-title: Design and performance assessment of a combined heat, hydrogen and power (CHHP) system based on ammonia-fueled SOFC publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.09.138 – volume: 69 start-page: 63 year: 2018 ident: 10.1016/j.fuel.2023.130243_b0025 article-title: Ammonia for power publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2018.07.001 – volume: 158 start-page: 4986 year: 2019 ident: 10.1016/j.fuel.2023.130243_b0065 article-title: Ammonia as an environmentally benign energy carrier for the fast growth of China publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.01.668 – volume: 285 year: 2021 ident: 10.1016/j.fuel.2023.130243_b0140 article-title: Exhaust energy recovery via catalytic ammonia decomposition to hydrogen for low carbon clean vehicles publication-title: Fuel doi: 10.1016/j.fuel.2020.119111 – year: 2022 ident: 10.1016/j.fuel.2023.130243_b0165 article-title: Design and multiobjective optimization of membrane steam methane reformer: a computational fluid dynamic analysis publication-title: Int J Energy Res doi: 10.1002/er.7750 – volume: 8 start-page: 526 year: 2022 ident: 10.1016/j.fuel.2023.130243_b0155 article-title: Performance analysis of ammonia decomposition endothermic membrane reactor heated by trough solar collector publication-title: Energy Rep doi: 10.1016/j.egyr.2022.03.152 – volume: 44 start-page: 6415 year: 2019 ident: 10.1016/j.fuel.2023.130243_b0180 article-title: Steady-state and transient modelling of a microchannel reactor for coupled ammonia decomposition and oxidation publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.01.132 – volume: 227 start-page: 231 year: 2002 ident: 10.1016/j.fuel.2023.130243_b0210 article-title: Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications publication-title: Appl Catal A doi: 10.1016/S0926-860X(01)00941-3 – volume: 9 start-page: 2275 year: 2021 ident: 10.1016/j.fuel.2023.130243_b0150 article-title: Study of static and dynamic behavior of a membrane reactor for hydrogen production publication-title: Processes doi: 10.3390/pr9122275 – volume: 46 start-page: 14455 year: 2021 ident: 10.1016/j.fuel.2023.130243_b0040 article-title: Production of ammonia as potential hydrogen carrier: review on thermochemical and electrochemical processes publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.01.214 – volume: 426 year: 2021 ident: 10.1016/j.fuel.2023.130243_b0130 article-title: A compact catalytic foam reactor for decomposition of ammonia by the Joule-heating mechanism publication-title: Chem Eng J doi: 10.1016/j.cej.2021.130802 – volume: 45 start-page: 10233 year: 2020 ident: 10.1016/j.fuel.2023.130243_b0020 article-title: Ammonia storage materials for nitrogen recycling hydrogen and energy carriers publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.01.145 – volume: 25 start-page: 314 year: 2019 ident: 10.1016/j.fuel.2023.130243_b0060 publication-title: Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: empirical and process-based estimates and uncertainty |
| SSID | ssj0007854 |
| Score | 2.4858606 |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 130243 |
| Title | Modeling and multi-objective optimization of electrified ammonia decomposition: Improvement of performance and thermal behavior |
| Volume | 358 |
| WOSCitedRecordID | wos001108620600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0016-2361 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007854 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELW20EM5VKW0AvohH3pbZcUmdpz0hhCIIoGQoNLeIsdx1KyyyWrZRdz6R_pjmYntYBYVlUMvURQ5jjfzNJ7MvnlDyDctEgCOiIMwV_CBwmQRSK7hTEsuC5kUPMy7ZhPi4iKZTNLLweCPq4W5rUXTJHd36fy_mhqugbGxdPYF5u4nhQtwDkaHI5gdjv9keOxuVrvSw44vGLT51Pi1YQseYmZLLzFONF1wqhIDUYlrrOSw0Mgzt2QuzBiYxIN2tIH5Wq0BhpAzsLSr-Pfj3ZOVrrtMBHbfNjz6PvNwhKWHRhOyrvoEtlzojmBw3v6CBYEhZ9UT1lDbBlcru-V2HstQB05lcLZq_DxGyJD6bCo5nW8eA2IiI83ufHNkdN2td8U_WY2o0xPHb3IQ01EJP2uELeFHD4Mfq2yv7X49J9HR3aYZzpHhHJmZ4xXZDAVPwWduHv44npz1O71IuFH5tiu3RVmGP7i-Ei_w8SKY63fkrf30oIcGMttkoJv3ZMsTpNwhvx14KBiWroGH-uChbUk98FALHvoIPN-pBx28w4NO9wQLHeqg84H8PDm-PjoNbIuOQIVMLIO0RAVIzceRwkYLMhalZiXjUrJQCY2dnSKWgrcqUx0VXEUiT2LY1xRnY50kRfSRbDRto3cJhbhWChYflNEBY1yIPGQqTvMUgrgQJaL2yNi9v0xZ_Xpso1Jnf7fcHhn298yNesszo_dfNPoTefMA489kY7lY6S_ktbpdVjeLrxYq97tNl94 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+multi-objective+optimization+of+electrified+ammonia+decomposition%3A+Improvement+of+performance+and+thermal+behavior&rft.jtitle=Fuel+%28Guildford%29&rft.au=Cherif%2C+Ali&rft.au=Zarei%2C+Mohammadamin&rft.au=Lee%2C+Joo-Sung&rft.au=Yoon%2C+Ha-Jun&rft.date=2024-02-15&rft.issn=0016-2361&rft.volume=358&rft.spage=130243&rft_id=info:doi/10.1016%2Fj.fuel.2023.130243&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2023_130243 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |