Tidiness Score-Guided Monte Carlo Tree Search for Visual Tabletop Rearrangement

In this letter, we present the tidiness score-guided Monte Carlo tree search (TSMCTS), a novel framework designed to address the tabletop tidying up problem using only an RGB-D camera. We address two major problems for tabletop tidying up problem: (1) the lack of public datasets and benchmarks, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters Jg. 10; H. 10; S. 10090 - 10097
Hauptverfasser: Kee, Hogun, Oh, Wooseok, Kang, Minjae, Ahn, Hyemin, Oh, Songhwai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2377-3766, 2377-3766
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this letter, we present the tidiness score-guided Monte Carlo tree search (TSMCTS), a novel framework designed to address the tabletop tidying up problem using only an RGB-D camera. We address two major problems for tabletop tidying up problem: (1) the lack of public datasets and benchmarks, and (2) the difficulty of specifying the goal configuration of unseen objects. We address the former by presenting the tabletop tidying up (TTU) dataset, a structured dataset collected in simulation. Using this dataset, we train a vision-based discriminator capable of predicting the tidiness score. This discriminator can consistently evaluate the degree of tidiness across unseen configurations, including real-world scenes. Addressing the second problem, we employ Monte Carlo tree search (MCTS) to find tidying trajectories without specifying explicit goals. Instead of providing specific goals, we demonstrate that our MCTS-based planner can find diverse tidied configurations using the tidiness score as a guidance. Consequently, we propose TSMCTS, which integrates a tidiness discriminator with an MCTS-based tidying planner to find optimal tidied arrangements. TSMCTS has successfully demonstrated its capability across various environments, including coffee tables, dining tables, office desks, and bathrooms.
AbstractList In this letter, we present the tidiness score-guided Monte Carlo tree search (TSMCTS), a novel framework designed to address the tabletop tidying up problem using only an RGB-D camera. We address two major problems for tabletop tidying up problem: (1) the lack of public datasets and benchmarks, and (2) the difficulty of specifying the goal configuration of unseen objects. We address the former by presenting the tabletop tidying up (TTU) dataset, a structured dataset collected in simulation. Using this dataset, we train a vision-based discriminator capable of predicting the tidiness score. This discriminator can consistently evaluate the degree of tidiness across unseen configurations, including real-world scenes. Addressing the second problem, we employ Monte Carlo tree search (MCTS) to find tidying trajectories without specifying explicit goals. Instead of providing specific goals, we demonstrate that our MCTS-based planner can find diverse tidied configurations using the tidiness score as a guidance. Consequently, we propose TSMCTS, which integrates a tidiness discriminator with an MCTS-based tidying planner to find optimal tidied arrangements. TSMCTS has successfully demonstrated its capability across various environments, including coffee tables, dining tables, office desks, and bathrooms.
Author Kee, Hogun
Kang, Minjae
Oh, Wooseok
Ahn, Hyemin
Oh, Songhwai
Author_xml – sequence: 1
  givenname: Hogun
  orcidid: 0009-0008-3320-5658
  surname: Kee
  fullname: Kee, Hogun
  email: hogun.kee@rllab.snu.ac.kr
  organization: Department of Electrical and Computer Engineering and ASRI, Seoul National University, Seoul, South Korea
– sequence: 2
  givenname: Wooseok
  surname: Oh
  fullname: Oh, Wooseok
  email: wooseok.oh@rllab.snu.ac.kr
  organization: Department of Electrical and Computer Engineering and ASRI, Seoul National University, Seoul, South Korea
– sequence: 3
  givenname: Minjae
  orcidid: 0000-0002-4971-3920
  surname: Kang
  fullname: Kang, Minjae
  email: minjae.kang@rllab.snu.ac.kr
  organization: Department of Electrical and Computer Engineering and ASRI, Seoul National University, Seoul, South Korea
– sequence: 4
  givenname: Hyemin
  orcidid: 0000-0001-8081-6023
  surname: Ahn
  fullname: Ahn, Hyemin
  email: hyemin.ahn@unist.ac.kr
  organization: Artificial Intelligence Graduate School (AIGS), Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
– sequence: 5
  givenname: Songhwai
  orcidid: 0000-0002-9781-2018
  surname: Oh
  fullname: Oh, Songhwai
  email: songhwai@snu.ac.kr
  organization: Department of Electrical and Computer Engineering and ASRI, Seoul National University, Seoul, South Korea
BookMark eNpNkMFLwzAUxoNMcM7dPXgIeO5MkyZpjmPoFCaDrXoNr-2rdnTNTNqD__06NtDT--B933sfv1syal2LhNzHbBbHzDytNvMZZ1zOhDQ65fyKjLnQOhJaqdE_fUOmIewYY7HkWhg5JuusLusWQ6DbwnmMln1dYknfXdshXYBvHM08It0i-OKbVs7Tzzr00NAM8gY7d6CbYeWh_cI9tt0dua6gCTi9zAn5eHnOFq_Rar18W8xXUcET3UUm0TmWKhfGQMFRVQhpCokBhsIIyDGVMgFenDTP0TBVMhiKlXlaQSGlmJDH892Ddz89hs7uXO_b4aUVPFGCa5XqwcXOrsK7EDxW9uDrPfhfGzN7ImcHcvZEzl7IDZGHc6RGxD97HHOupBZHB-xsFg
CODEN IRALC6
Cites_doi 10.1109/MRA.2015.2448951
10.1109/CVPR52688.2022.01437
10.1109/ICRA46639.2022.9811931
10.15607/rss.2021.xvii.072
10.1109/ICCV51070.2023.00371
10.15607/rss.2023.xix.029
10.1109/ICRA.2019.8793946
10.1109/ICRA.2015.7139396
10.1109/CVPR52733.2024.02123
10.1109/ICRA48506.2021.9561877
10.1016/j.ijmedinf.2015.03.003
10.15607/rss.2023.xix.031
10.1109/IROS58592.2024.10802562
10.1007/11871842_29
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2025.3597822
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Government
EISSN 2377-3766
EndPage 10097
ExternalDocumentID 10_1109_LRA_2025_3597822
11122657
Genre orig-research
GrantInformation_xml – fundername: Development of Complex Task Planning Technologies for Autonomous Agents
– fundername: Korea Government
  grantid: RS-2019-II191190
– fundername: Robot Learning: Efficient, Safe, and Socially-Acceptable Machine Learning
– fundername: Institute of Information & Communications Technology Planning & Evaluation
– fundername: Innovative Human Resource Development for Local Intellectualization program
– fundername: Korea Government
  grantid: RS-2024-00336738
– fundername: Korea Government
  grantid: IITP-2025-RS-2022-00156361
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c247t-947bed6b399ac2e6fea88a49a0e393abe8554a2c93ab2be906d0adeddb8fac553
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001563969800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sat Nov 22 13:40:56 EST 2025
Sat Nov 29 07:38:05 EST 2025
Wed Aug 27 07:37:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-947bed6b399ac2e6fea88a49a0e393abe8554a2c93ab2be906d0adeddb8fac553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9781-2018
0009-0008-3320-5658
0000-0002-4971-3920
0000-0001-8081-6023
PQID 3246327687
PQPubID 4437225
PageCount 8
ParticipantIDs ieee_primary_11122657
crossref_primary_10_1109_LRA_2025_3597822
proquest_journals_3246327687
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Shridhar (ref9) 2022
ref14
ref20
ref11
Wu (ref16) 2022
ref10
ref21
ref2
ref1
ref17
Kapelyukh (ref15) 2023
ref19
ref18
Kapelyukh (ref13) 2022
Kostrikov (ref12) 2022
ref4
ref3
ref6
ref5
Radford (ref7) 2021
Li (ref8) 2022
References_xml – ident: ref17
  doi: 10.1109/MRA.2015.2448951
– ident: ref3
  doi: 10.1109/CVPR52688.2022.01437
– ident: ref4
  doi: 10.1109/ICRA46639.2022.9811931
– start-page: 894
  volume-title: Proc. Conf. Robot Learn.
  year: 2022
  ident: ref9
  article-title: Cliport: What and where pathways for robotic manipulation
– volume-title: Int. Conf. Learn.
  year: 2022
  ident: ref12
  article-title: Offline reinforcement learning with implicit Q-learning
– start-page: 31986
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2022
  ident: ref16
  article-title: TARGF: Learning target gradient field to rearrange objects without explicit goal specification
– ident: ref2
  doi: 10.15607/rss.2021.xvii.072
– ident: ref19
  doi: 10.1109/ICCV51070.2023.00371
– year: 2023
  ident: ref15
  article-title: Workshop on Learning Effective Abstractions for Planning (LEAP)
  publication-title: Conf. Robot. Learn.
– start-page: 740
  volume-title: Proc. Conf. Robot Learn.
  year: 2022
  ident: ref13
  article-title: My house, my rules: Learning tidying preferences with graph neural networks
– ident: ref10
  doi: 10.15607/rss.2023.xix.029
– ident: ref1
  doi: 10.1109/ICRA.2019.8793946
– ident: ref14
  doi: 10.1109/ICRA.2015.7139396
– ident: ref18
  doi: 10.1109/CVPR52733.2024.02123
– ident: ref20
  doi: 10.1109/ICRA48506.2021.9561877
– start-page: 8748
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2021
  ident: ref7
  article-title: Learning transferable visual models from natural language supervision
– start-page: 12888
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2022
  ident: ref8
  article-title: Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation
– ident: ref21
  doi: 10.1016/j.ijmedinf.2015.03.003
– ident: ref5
  doi: 10.15607/rss.2023.xix.031
– ident: ref6
  doi: 10.1109/IROS58592.2024.10802562
– ident: ref11
  doi: 10.1007/11871842_29
SSID ssj0001527395
Score 2.3118227
Snippet In this letter, we present the tidiness score-guided Monte Carlo tree search (TSMCTS), a novel framework designed to address the tabletop tidying up problem...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 10090
SubjectTerms Bathrooms
Configurations
data sets for robot learning
Datasets
deep learning methods
Discriminators
Feature extraction
Government
Manipulation planning
Monte Carlo methods
Monte Carlo simulation
Planning
Robot learning
Search problems
Searching
Semantics
Training
Trajectory
Visualization
Title Tidiness Score-Guided Monte Carlo Tree Search for Visual Tabletop Rearrangement
URI https://ieeexplore.ieee.org/document/11122657
https://www.proquest.com/docview/3246327687
Volume 10
WOSCitedRecordID wos001563969800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RiqEMPAqIQqk8sDCkDXnZHquqhaEtqJSqW2Q7FykSaqo-GPnt2E6qghADm4fYse7i-Dv7u-8A7kJUMmSKOej6SgcozHWEYMIJBMrggQqKVrdgNqTjMZvP-UuZrG5zYRDRks-wbZr2Lj_J1dYclXX0utRoIaQVqFBKi2St_YGKkRLj4e4q0uWd4aSrA0AvbPsaNTPP-7H12Foqv37AdlcZnPxzPqdwXMJH0i38fQYHuKjD0TdRwTrU9uVzz-F5miWW2E5ejV6l87jNEkzIyGhSkZ5YvedkukIkBeuYaARLZtl6q18xNTlVm3xJJobNa1IQzIgX8DboT3tPTllDwVFeQDcOD6jEJJIahwjlYZSiYEwEXLjoc19INDQ14SnT9iRyN0pcoSeSSJYKFYb-JVQX-QKvgHDJdV9XBkYzj_kpi5IAkfqSBSwNBW3A_c688bKQyohtiOHyWLsiNq6IS1c04MKYc_9cackGNHcOicvFtI415ot8T8dF9PqPbjdQM6MXJLsmVDerLd7CofrYZOtVCyqjz37Lfi1fCSy-xQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xkigDzyLK0wMLQyB17NgeEQKKaAuCgNgi27lKlVCL-uD3YzupCkIMbB7i2LqL4-_s774DOOVoDZdWRhgn1gUoMo60ljpiGg1rCi0w6Ba8tkW3K9_e1GOVrB5yYRAxkM_w3DfDXX4xtFN_VHbh1qVDC1wswjJnjDbLdK35kYoXE1N8dhkZq4v206ULASk_TxxulpT-2HxCNZVfv-Cwr9xs_HNGm7BeAUhyWXp8CxZwsA1r32QFt6E2L6C7Aw9ZvwjUdvLsFSuj22m_wIJ0vCoVudKj9yHJRoik5B0Th2HJa388dUNkPqtqMvwgT57P65MQ_Bvr8HJznV21oqqKQmQpE5NIMWGwSI1DItpSTHuopdRM6RgTlWiDnqimqfVtalDFaRFrN5HCyJ62nCe7sDQYDnAPiDLK9Y0N86p5MunJtGCIIjGSyR7XogFnM_PmH6VYRh6CjFjlzhW5d0VeuaIBdW_O-XOVJRtwOHNIXi2nce5QX5pQFxmJ_T-6ncBqK-u08_Zd9_4Aan6kknJ3CEuT0RSPYMV-Tvrj0XH4Zr4AmsnA2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tidiness+Score-Guided+Monte+Carlo+Tree+Search+for+Visual+Tabletop+Rearrangement&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Kee%2C+Hogun&rft.au=Oh%2C+Wooseok&rft.au=Kang%2C+Minjae&rft.au=Ahn%2C+Hyemin&rft.date=2025-10-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=10&rft.issue=10&rft.spage=10090&rft.epage=10097&rft_id=info:doi/10.1109%2FLRA.2025.3597822&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2025_3597822
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon