Multiplexing With Multi-Level ASK and Noncoherent MIMO in Rayleigh Fading
For an <inline-formula> <tex-math notation="LaTeX">N_{t} </tex-math></inline-formula>-input <inline-formula> <tex-math notation="LaTeX">N_{r} </tex-math></inline-formula>-output system, noncoherent reception of spatially multiplexed...
Uloženo v:
| Vydáno v: | IEEE transactions on communications Ročník 72; číslo 10; s. 6162 - 6177 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0090-6778, 1558-0857 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | For an <inline-formula> <tex-math notation="LaTeX">N_{t} </tex-math></inline-formula>-input <inline-formula> <tex-math notation="LaTeX">N_{r} </tex-math></inline-formula>-output system, noncoherent reception of spatially multiplexed one-sided L-level amplitude-shift keying symbols transmitted over a flat Rayleigh fading channel, with energy detection, is considered. The symbol vector is passed through an <inline-formula> <tex-math notation="LaTeX">N_{t}\times N_{t} </tex-math></inline-formula> deterministic precoder matrix. Two precoders are presented: diagonal, having positive diagonal elements in geometric progression (GP); rank-one, having positive row elements in GP. Each symbol vector is transformed into a precoded scalar. For a one-to-one correspondence between integers <inline-formula> <tex-math notation="LaTeX">0,1,\ldots ,L^{N_{t}}-1 </tex-math></inline-formula> and precoded scalars, a sufficient condition relating the precoder GP ratio <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> to the amplitude levels is derived for each precoder. To ease the difficulty of computing the exact symbol vector error probability (SVEP) for large <inline-formula> <tex-math notation="LaTeX">N_{r} </tex-math></inline-formula>, a Gaussian approximation of the received signal energy is made and a closed form expression for a large <inline-formula> <tex-math notation="LaTeX">N_{r} </tex-math></inline-formula> SVEP approximation is derived. With first level zero, the cases of: levels in arithmetic progression, non-zero levels in GP with amplitude ratio <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>, are considered. Parameters <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula> are chosen to minimize the SVEP saturation value (approached at high signal-to-noise ratio). Furthermore, symbol-vector-dependent scale factors are introduced for error performance enhancement. Visible light communication and sensor network are two practical application scenarios for this work. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0090-6778 1558-0857 |
| DOI: | 10.1109/TCOMM.2024.3397824 |