Multiplexing With Multi-Level ASK and Noncoherent MIMO in Rayleigh Fading

For an <inline-formula> <tex-math notation="LaTeX">N_{t} </tex-math></inline-formula>-input <inline-formula> <tex-math notation="LaTeX">N_{r} </tex-math></inline-formula>-output system, noncoherent reception of spatially multiplexed...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on communications Ročník 72; číslo 10; s. 6162 - 6177
Hlavní autor: Mallik, Ranjan K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0090-6778, 1558-0857
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For an <inline-formula> <tex-math notation="LaTeX">N_{t} </tex-math></inline-formula>-input <inline-formula> <tex-math notation="LaTeX">N_{r} </tex-math></inline-formula>-output system, noncoherent reception of spatially multiplexed one-sided L-level amplitude-shift keying symbols transmitted over a flat Rayleigh fading channel, with energy detection, is considered. The symbol vector is passed through an <inline-formula> <tex-math notation="LaTeX">N_{t}\times N_{t} </tex-math></inline-formula> deterministic precoder matrix. Two precoders are presented: diagonal, having positive diagonal elements in geometric progression (GP); rank-one, having positive row elements in GP. Each symbol vector is transformed into a precoded scalar. For a one-to-one correspondence between integers <inline-formula> <tex-math notation="LaTeX">0,1,\ldots ,L^{N_{t}}-1 </tex-math></inline-formula> and precoded scalars, a sufficient condition relating the precoder GP ratio <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> to the amplitude levels is derived for each precoder. To ease the difficulty of computing the exact symbol vector error probability (SVEP) for large <inline-formula> <tex-math notation="LaTeX">N_{r} </tex-math></inline-formula>, a Gaussian approximation of the received signal energy is made and a closed form expression for a large <inline-formula> <tex-math notation="LaTeX">N_{r} </tex-math></inline-formula> SVEP approximation is derived. With first level zero, the cases of: levels in arithmetic progression, non-zero levels in GP with amplitude ratio <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>, are considered. Parameters <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula> are chosen to minimize the SVEP saturation value (approached at high signal-to-noise ratio). Furthermore, symbol-vector-dependent scale factors are introduced for error performance enhancement. Visible light communication and sensor network are two practical application scenarios for this work.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2024.3397824