Residual Cross-Attention Transformer-Based Multi-User CSI Feedback With Deep Joint Source-Channel Coding
This letter proposes a deep-learning (DL)-based multi-user channel state information (CSI) feedback framework for massive multiple-input multiple-output systems, where the deep joint source-channel coding (DJSCC) is utilized to improve the CSI reconstruction accuracy. Specifically, we design a multi...
Saved in:
| Published in: | IEEE wireless communications letters Vol. 14; no. 8; pp. 2481 - 2485 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2162-2337, 2162-2345 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This letter proposes a deep-learning (DL)-based multi-user channel state information (CSI) feedback framework for massive multiple-input multiple-output systems, where the deep joint source-channel coding (DJSCC) is utilized to improve the CSI reconstruction accuracy. Specifically, we design a multi-user joint CSI feedback framework, whereby the CSI correlation of nearby users is utilized to reduce the feedback overhead. Under the framework, we propose a new residual cross-attention transformer architecture, which is deployed at the base station to further improve the CSI feedback performance. Moreover, to tackle the "cliff-effect" of conventional bit-level CSI feedback approaches, we integrated DJSCC into the multi-user CSI feedback, together with utilizing a two-stage training scheme to adapt to varying uplink noise levels. Experimental results demonstrate the superiority of our methods in CSI feedback performance, with low network complexity and better scalability. |
|---|---|
| AbstractList | This letter proposes a deep-learning (DL)-based multi-user channel state information (CSI) feedback framework for massive multiple-input multiple-output systems, where the deep joint source-channel coding (DJSCC) is utilized to improve the CSI reconstruction accuracy. Specifically, we design a multi-user joint CSI feedback framework, whereby the CSI correlation of nearby users is utilized to reduce the feedback overhead. Under the framework, we propose a new residual cross-attention transformer architecture, which is deployed at the base station to further improve the CSI feedback performance. Moreover, to tackle the "cliff-effect" of conventional bit-level CSI feedback approaches, we integrated DJSCC into the multi-user CSI feedback, together with utilizing a two-stage training scheme to adapt to varying uplink noise levels. Experimental results demonstrate the superiority of our methods in CSI feedback performance, with low network complexity and better scalability. |
| Author | Wu, Minghui Han, Ziqi Zhang, Hengwei Qiao, Li Liu, Ling Gao, Zhen |
| Author_xml | – sequence: 1 givenname: Hengwei orcidid: 0009-0002-3313-2264 surname: Zhang fullname: Zhang, Hengwei email: zhanghengwei2001@163.com organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Minghui orcidid: 0000-0001-9195-9556 surname: Wu fullname: Wu, Minghui organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Li orcidid: 0000-0003-0586-189X surname: Qiao fullname: Qiao, Li organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Ling orcidid: 0009-0009-0954-6986 surname: Liu fullname: Liu, Ling email: liuling@xidian.edu.cn organization: Guangzhou Institute of Technology, Xidian University, Guangzhou, China – sequence: 5 givenname: Ziqi surname: Han fullname: Han, Ziqi organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 6 givenname: Zhen orcidid: 0000-0002-2709-0216 surname: Gao fullname: Gao, Zhen email: gaozhen16@bit.edu.cn organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China |
| BookMark | eNpFkMtPAjEQxhuDiYjcPXho4nmxr30dcRXFYEwEwnFT2qkUoYvt7sH_3hKMzmUmme-bx-8S9VzjAKFrSkaUkvJutqpGjLB0xNNcEErPUJ_RjCWMi7T3V_P8Ag1D2JIYGaGMFn20eYdgdSd3uPJNCMm4bcG1tnF44aULpvF78Mm9DKDxa7drbbIM4HE1n-IJgF5L9YlXtt3gB4ADfmmsa_G86byCpNpI5yAObrR1H1fo3MhdgOFvHqDl5HFRPSezt6dpNZ4liom8TYq15KaEQlNBNdOsTNM1B6MLk2bCAJdaKUVVvubcaFoKYtJSGAWEFTSNbT5At6e5B998dRDaehvPcXFlzZnIuChZkUUVOanU8WsPpj54u5f-u6akPiKtI9L6iLT-RRotNyeLBYB_OSU0I3nGfwDVSnPt |
| CODEN | IWCLAF |
| Cites_doi | 10.1109/TCOMM.2022.3217777 10.1109/TAP.2014.2310220 10.48550/ARXIV.1706.03762 10.1109/TCOMM.2024.3524028 10.1109/TCCN.2019.2919300 10.1109/TWC.2020.3043502 10.1109/TPAMI.2023.3275156 10.1109/MWC.008.2200157 10.1109/JSAC.2021.3087269 10.1109/JSAC.2022.3221963 10.1109/MWC.2017.1700147 10.1109/tccn.2024.3486168 10.1109/LWC.2022.3149416 10.1109/TWC.2024.3380638 10.1109/TSP.2014.2324991 10.1109/OJVT.2023.3300464 10.1109/LWC.2018.2818160 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/LWC.2025.3574011 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2162-2345 |
| EndPage | 2485 |
| ExternalDocumentID | 10_1109_LWC_2025_3574011 11016076 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Beijing Nova Program funderid: 10.13039/501100005090 – fundername: Natural Science Foundation of Shandong Province; Shandong Province Natural Science Foundation grantid: ZR2022YQ62 funderid: 10.13039/501100007129 – fundername: Natural Science Foundation of China (NSFC) grantid: 62471036 funderid: 10.13039/501100001809 – fundername: Beijing Natural Science Foundation grantid: L242011 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IES IFIPE IPLJI JAVBF M43 OCL RIA RIE RNS AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c247t-8ba3f9e8d141d2d2955b3efd8f564fe3adccc1c7b33fd1940f594fce02815e3a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001547508200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-2337 |
| IngestDate | Mon Nov 10 11:10:54 EST 2025 Sat Nov 29 07:39:55 EST 2025 Wed Aug 20 06:20:52 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-8ba3f9e8d141d2d2955b3efd8f564fe3adccc1c7b33fd1940f594fce02815e3a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0586-189X 0009-0009-0954-6986 0000-0002-2709-0216 0000-0001-9195-9556 0009-0002-3313-2264 |
| PQID | 3246349286 |
| PQPubID | 2040496 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_3246349286 crossref_primary_10_1109_LWC_2025_3574011 ieee_primary_11016076 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE wireless communications letters |
| PublicationTitleAbbrev | LWC |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 (ref16) 2017 |
| References_xml | – ident: ref1 doi: 10.1109/TCOMM.2022.3217777 – volume-title: Study on channel model for frequencies from 0.5 to 100 GHz year: 2017 ident: ref16 – ident: ref17 doi: 10.1109/TAP.2014.2310220 – ident: ref13 doi: 10.48550/ARXIV.1706.03762 – ident: ref9 doi: 10.1109/TCOMM.2024.3524028 – ident: ref14 doi: 10.1109/TCCN.2019.2919300 – ident: ref10 doi: 10.1109/TWC.2020.3043502 – ident: ref15 doi: 10.1109/TPAMI.2023.3275156 – ident: ref4 doi: 10.1109/MWC.008.2200157 – ident: ref7 doi: 10.1109/JSAC.2021.3087269 – ident: ref11 doi: 10.1109/JSAC.2022.3221963 – ident: ref3 doi: 10.1109/MWC.2017.1700147 – ident: ref6 doi: 10.1109/tccn.2024.3486168 – ident: ref5 doi: 10.1109/LWC.2022.3149416 – ident: ref8 doi: 10.1109/TWC.2024.3380638 – ident: ref2 doi: 10.1109/TSP.2014.2324991 – ident: ref18 doi: 10.1109/OJVT.2023.3300464 – ident: ref12 doi: 10.1109/LWC.2018.2818160 |
| SSID | ssj0000601218 |
| Score | 2.3740814 |
| Snippet | This letter proposes a deep-learning (DL)-based multi-user channel state information (CSI) feedback framework for massive multiple-input multiple-output... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2481 |
| SubjectTerms | Coding Correlation Decoding deep joint source-channel coding (DJSCC) Delays Downlink Encoding Feature extraction Feedback massive multiple-input multiple-output (MIMO) multi-user CSI feedback Noise levels Residual cross-attention Training Transformers Uplink Vectors |
| Title | Residual Cross-Attention Transformer-Based Multi-User CSI Feedback With Deep Joint Source-Channel Coding |
| URI | https://ieeexplore.ieee.org/document/11016076 https://www.proquest.com/docview/3246349286 |
| Volume | 14 |
| WOSCitedRecordID | wos001547508200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2345 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000601218 issn: 2162-2337 databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYoYoCBZxHlJQ8sDG5rO3HiEQoVIFQh2qrdosQ-qxVSWrUpvx_bSXkIMbBEkeJY1n1O7nx33x1CV9ZkEGBoSlJuL4EBQWRoFElZ5oK5LICySNJz1OvF47F8qcjqngsDAD75DJru1sfy9UytnKusRct6aKKGalEkSrLWp0PFFRZh3p_HqGCEcR6tw5Jt2XoedexhkIVNHroedPSHGvJ9VX79jL2G6e79c237aLcyJfFNif0B2oD8EO18KzB4hCavsPRsK9xxyyA3RVGmN-LB2mCFBbm1mkxjT8UlQ7slcaf_iLtWrWWpesOjaTHBdwBz_DSb5gXue3c_cbSEHOzEM6f96mjYvR90HkjVW4EoFkQFibOUGwmxpgHVTDMZhhkHo2MTCosYT7VSiqoo49xoKoO2CWVgFFhzhIb2MT9Gm_kshxOEJVXCZDyLKWSBolRao4IblQYRN20e6Qa6Xos6mZclNBJ_9GjLxMKSOFiSCpYGqjvRfo2rpNpA52twkuojWybWFhSuuGIsTv947Qxtu9nLhL1ztFksVnCBttR7MV0uLv3--QALH8Ly |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RqFQ48GipWJ4-cOFgWL-S-AgLK2i3q6osgluU2GOxqpRFu4Hfj-1keQj10EsUKYljzTiZz_P4BuDQQ4YEHStoIfxBOkyoVs7QgpchmMslNiRJg3Q4zO7u9O-2WD3WwiBiTD7D43AaY_l2Yh6Dq-yENXxoySdYUtIP1ZRrvbhUArUIjx49zhJOuRDpPDDZ1SeD257fDnJ1LFToQsfeGaLYWeXD7zjamP7af85uHVZbMElOG-1vwAJWX2HlDcXgN7j_g7NYb0V6YRr0tK6bBEcymkNWnNIzb8ssicW49MYvStK7viJ9b9jKwvwlt-P6npwjPpAfk3FVk-vo8KehMKFCP_Ak2L9NuOlfjHqXtO2uQA2XaU2zshBOY2aZZJZbrpUqBTqbOZV4nYnCGmOYSUshnGVadp3S0hn0gIQpf1l8h8VqUuEWEM1M4kpRZgxLaRjTHlYIZwqZCtcVqe3A0VzU-UNDopHHzUdX514teVBL3qqlA5tBtK_3tVLtwO5cOXn7mc1yjwaTQK-YJdv_eOwAvlyOfg3ywdXw5w4shzc16Xu7sFhPH3EPPpunejyb7se19Axai8Y5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residual+Cross-Attention+Transformer-Based+Multi-User+CSI+Feedback+With+Deep+Joint+Source-Channel+Coding&rft.jtitle=IEEE+wireless+communications+letters&rft.au=Zhang%2C+Hengwei&rft.au=Wu%2C+Minghui&rft.au=Li%2C+Qiao&rft.au=Liu%2C+Ling&rft.date=2025-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-2337&rft.eissn=2162-2345&rft.volume=14&rft.issue=11&rft.spage=2481&rft.epage=2485&rft_id=info:doi/10.1109%2FLWC.2025.3574011&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2337&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2337&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2337&client=summon |