Hybrid Physical-Data Driven Model for Denoising of Generator State Measurements
The measurement data of power systems are often mixed with a lot of noise due to the interference of the external environment. In order to eliminate the effect of noise, it is significant to denoise the noisy data to obtain the real state measurements. In order to deal with the problem of insufficie...
Uloženo v:
| Vydáno v: | IEEE transactions on instrumentation and measurement Ročník 74; s. 1 - 12 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9456, 1557-9662 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The measurement data of power systems are often mixed with a lot of noise due to the interference of the external environment. In order to eliminate the effect of noise, it is significant to denoise the noisy data to obtain the real state measurements. In order to deal with the problem of insufficient interpretability in existing data-driven denoising methods, a hybrid physical-data driven denoising model (PDDM) based on the stacked denoising autoencoder (SDAE) is proposed. First, the previous knowledge is extracted from the physical model of the generator. Physical constraints are designed based on the inherent relationships between rotor angle, angular frequency, and power. Second, based on SDAE deep-learning (DL) model, physical constraints are embedded into the loss function to guide the training of a neural network. The derivatives of denoised data are leveraged in anticipation of satisfying the differential-algebraic equations. The physical process is directly approximated by the neural network in this method, making the outputs satisfy the physical laws. The reliability and interpretability of the denoising results are improved. Meanwhile, the dependence on datasets is reduced by virtue of the hybrid physical-data driven mode. The robustness is still maintained. Finally, it is verified in the 39-bus New England system and a realistic regional power system. The real noisy data are also taken into account in testing to verify its extensibility. The test results show that the method proposed can achieve a satisfactory effect in both denoising accuracy and generalization capability. |
|---|---|
| AbstractList | The measurement data of power systems are often mixed with a lot of noise due to the interference of the external environment. In order to eliminate the effect of noise, it is significant to denoise the noisy data to obtain the real state measurements. In order to deal with the problem of insufficient interpretability in existing data-driven denoising methods, a hybrid physical-data driven denoising model (PDDM) based on the stacked denoising autoencoder (SDAE) is proposed. First, the previous knowledge is extracted from the physical model of the generator. Physical constraints are designed based on the inherent relationships between rotor angle, angular frequency, and power. Second, based on SDAE deep-learning (DL) model, physical constraints are embedded into the loss function to guide the training of a neural network. The derivatives of denoised data are leveraged in anticipation of satisfying the differential-algebraic equations. The physical process is directly approximated by the neural network in this method, making the outputs satisfy the physical laws. The reliability and interpretability of the denoising results are improved. Meanwhile, the dependence on datasets is reduced by virtue of the hybrid physical-data driven mode. The robustness is still maintained. Finally, it is verified in the 39-bus New England system and a realistic regional power system. The real noisy data are also taken into account in testing to verify its extensibility. The test results show that the method proposed can achieve a satisfactory effect in both denoising accuracy and generalization capability. |
| Author | Zhang, Shiping Wang, Huaiyuan Liu, Baojin |
| Author_xml | – sequence: 1 givenname: Huaiyuan orcidid: 0000-0003-4349-826X surname: Wang fullname: Wang, Huaiyuan email: 79749544@qq.com organization: Fujian Key Laboratory of New Energy Generation and Power Conversion, College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China – sequence: 2 givenname: Shiping orcidid: 0009-0006-6323-0200 surname: Zhang fullname: Zhang, Shiping email: 740408941@qq.com organization: Fujian Key Laboratory of New Energy Generation and Power Conversion, College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China – sequence: 3 givenname: Baojin orcidid: 0000-0003-0017-7626 surname: Liu fullname: Liu, Baojin email: lbj@fzu.edu.cn organization: Fujian Key Laboratory of New Energy Generation and Power Conversion, College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China |
| BookMark | eNpNkM9LAkEUgIcwyKx7hw4LndfezM7PY2ipoBhk52HceVsrOmsza-B_34oeOj14fN978N2SXmgCEvJAYUgpmOfVbDFkwMSwEFwYTa9InwqhciMl65E-ANW54ULekNuUNgCgJFd9spwe17H22fv3MdWl2-Zj17psHOtfDNmi8bjNqiZmYwxNnerwlTVVNsGA0bXd-qN1LWYLdOkQcYehTXfkunLbhPeXOSCfb6-r0TSfLyez0cs8LxlXba5BlUYyqrTwiivjvGNrqtcOTFVQpcBrv5bGY-WhBC8ZeqOEQV1wLUqNxYA8ne_uY_NzwNTaTXOIoXtpO19yYMBFR8GZKmOTUsTK7mO9c_FoKdhTNttls6ds9pKtUx7PSo2I_3AD3FBe_AFTHWoL |
| CODEN | IEIMAO |
| Cites_doi | 10.3390/en15155329 10.1109/TDSC.2022.3223288 10.1109/JIOT.2020.3040195 10.1109/TKDE.2020.2983930 10.1109/TIM.2022.3227610 10.1109/PowerTech46648.2021.9494807 10.1109/TNNLS.2022.3230648 10.1016/j.ijepes.2020.106237 10.1109/LCOMM.2021.3091800 10.1109/TII.2021.3072397 10.1109/TPWRS.2019.2922671 10.3390/app9235200 10.1016/j.epsr.2020.106437 10.1109/TPWRS.2015.2400633 10.1109/TLA.2024.10620390 10.1016/j.asoc.2022.109217 10.1109/TNNLS.2023.3247163 10.3390/s20133738 10.1109/TSG.2021.3126268 10.1109/ICPS51807.2021.9416638 10.1109/TIM.2022.3212551 10.1109/TIM.2024.3403203 10.1109/ACCESS.2023.3299208 10.1109/ieeestd.2011.6111219 10.1109/JSEN.2022.3193943 10.1049/esi2.12118 10.1109/tpwrs.2024.3429339 10.1109/TPWRS.2015.2413935 10.1109/JRFID.2022.3213882 10.1109/ICEI.2018.00052 10.1016/j.epsr.2020.106547 10.1109/TSP.2018.2821648 10.1109/ACCESS.2023.3254448 10.1109/TSIPN.2016.2539680 10.1109/TSMC.2020.3005433 10.1049/iet-gtd.2020.0785 10.1109/tim.2022.3189743 10.1109/TPWRS.2020.2988352 10.1109/ACCESS.2020.2987324 10.1109/TPWRS.2022.3162473 10.1109/ACCESS.2021.3118300 10.1109/TIM.2022.3147887 10.1109/TPWRS.2022.3184981 10.1109/PESGM41954.2020.9282004 10.17775/cseejpes.2021.00290 10.3390/electronics12071590 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2025.3545981 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 12 |
| ExternalDocumentID | 10_1109_TIM_2025_3545981 10904914 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Fujian Province, China grantid: 2022J01113 funderid: 10.13039/501100003392 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c247t-807c9621785d7479ada2b18ba09f31770d8db69defd0c0d62ed9759e83485c8e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001442976400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:14:33 EDT 2025 Sat Nov 29 08:09:14 EST 2025 Wed Aug 27 01:47:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-807c9621785d7479ada2b18ba09f31770d8db69defd0c0d62ed9759e83485c8e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4349-826X 0000-0003-0017-7626 0009-0006-6323-0200 |
| PQID | 3176402045 |
| PQPubID | 85462 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TIM_2025_3545981 ieee_primary_10904914 proquest_journals_3176402045 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Vincent (ref33) 2010; 11 ref24 ref46 ref23 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref7 doi: 10.3390/en15155329 – ident: ref16 doi: 10.1109/TDSC.2022.3223288 – ident: ref24 doi: 10.1109/JIOT.2020.3040195 – ident: ref26 doi: 10.1109/TKDE.2020.2983930 – ident: ref35 doi: 10.1109/TIM.2022.3227610 – ident: ref40 doi: 10.1109/PowerTech46648.2021.9494807 – ident: ref36 doi: 10.1109/TNNLS.2022.3230648 – ident: ref44 doi: 10.1016/j.ijepes.2020.106237 – ident: ref46 doi: 10.1109/LCOMM.2021.3091800 – ident: ref5 doi: 10.1109/TII.2021.3072397 – ident: ref10 doi: 10.1109/TPWRS.2019.2922671 – ident: ref19 doi: 10.3390/app9235200 – ident: ref43 doi: 10.1016/j.epsr.2020.106437 – ident: ref8 doi: 10.1109/TPWRS.2015.2400633 – ident: ref13 doi: 10.1109/TLA.2024.10620390 – ident: ref28 doi: 10.1016/j.asoc.2022.109217 – ident: ref30 doi: 10.1109/TNNLS.2023.3247163 – ident: ref42 doi: 10.3390/s20133738 – ident: ref6 doi: 10.1109/TSG.2021.3126268 – ident: ref12 doi: 10.1109/ICPS51807.2021.9416638 – ident: ref21 doi: 10.1109/TIM.2022.3212551 – ident: ref4 doi: 10.1109/TIM.2024.3403203 – ident: ref25 doi: 10.1109/ACCESS.2023.3299208 – ident: ref31 doi: 10.1109/ieeestd.2011.6111219 – ident: ref34 doi: 10.1109/JSEN.2022.3193943 – ident: ref3 doi: 10.1049/esi2.12118 – ident: ref9 doi: 10.1109/tpwrs.2024.3429339 – ident: ref20 doi: 10.1109/TPWRS.2015.2413935 – ident: ref38 doi: 10.1109/JRFID.2022.3213882 – ident: ref45 doi: 10.1109/ICEI.2018.00052 – ident: ref39 doi: 10.1016/j.epsr.2020.106547 – ident: ref18 doi: 10.1109/TSP.2018.2821648 – ident: ref22 doi: 10.1109/ACCESS.2023.3254448 – volume: 11 start-page: 3371 year: 2010 ident: ref33 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – ident: ref17 doi: 10.1109/TSIPN.2016.2539680 – ident: ref47 doi: 10.1109/TSMC.2020.3005433 – ident: ref11 doi: 10.1049/iet-gtd.2020.0785 – ident: ref15 doi: 10.1109/tim.2022.3189743 – ident: ref37 doi: 10.1109/TPWRS.2020.2988352 – ident: ref27 doi: 10.1109/ACCESS.2020.2987324 – ident: ref29 doi: 10.1109/TPWRS.2022.3162473 – ident: ref14 doi: 10.1109/ACCESS.2021.3118300 – ident: ref32 doi: 10.1109/TIM.2022.3147887 – ident: ref1 doi: 10.1109/TPWRS.2022.3184981 – ident: ref41 doi: 10.1109/PESGM41954.2020.9282004 – ident: ref2 doi: 10.17775/cseejpes.2021.00290 – ident: ref23 doi: 10.3390/electronics12071590 |
| SSID | ssj0007647 |
| Score | 2.448571 |
| Snippet | The measurement data of power systems are often mixed with a lot of noise due to the interference of the external environment. In order to eliminate the effect... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Constraints Data recovery deep learning (DL) Differential equations Generators Machine learning Neural networks Noise Noise measurement Noise reduction Phasor measurement units physics-informed neural networks (PINNs) Pollution measurement Power measurement power system Power system stability stacked denoising autoencoder (SDAE) Training |
| Title | Hybrid Physical-Data Driven Model for Denoising of Generator State Measurements |
| URI | https://ieeexplore.ieee.org/document/10904914 https://www.proquest.com/docview/3176402045 |
| Volume | 74 |
| WOSCitedRecordID | wos001442976400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BBRIMPEoRhYI8sDCkzdPxjYhSFYmWDgV1ixzbkSqhFDUpEv8e20mhCDGwZUgi6853_r7zPQCuo9TLqCepE9BIExSBQttcgI4bCIUcFUU7reHlMR6P2WyGk7pY3dbCKKVs8pnqmkd7ly8XYmVCZT2TRBiiGVu9Hce0Ktb6crsxDasGmZ62YA0L1neSLvamDyPNBP2oG2i8gMz7cQbZoSq_PLE9XgaH_1zYERzUOJLcVoo_hi2VN2F_o7tgE3ZtdqcoTuBp-GEKs8ikVorT5yUn_aXxdMRMQ3slGruSvsoXcxM7IIuMVP2oNSMnFo-S0XcwsWjB8-B-ejd06kkKjvDDuDQdhwVSzT5YJDV_QC65n3os5S5mGkDErmQypShVJl3hSuoriXGEigUhiwRTwSk08kWuzoDwNNMQhIWp6TxPOU0DTxggoHzmIgtlG27Wsk3eqoYZiSUaLiZaD4nRQ1LroQ0tI8uN9yoxtqGz1kZSm1SR6HVSQ3bD6PyPzy5gz_y9CpB0oFEuV-oSdsR7OS-WV3a3fAIurbsC |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4hHgIGnkUUCnhgYQg4ieP4RkSpWtEWhoK6RYntSJVQg_pA4t9jOykUIQa2DIli3fnO33e-B8BllPk59xX3Qh4ZgiJRGpsL0aOh1Jii5uimNbx0435fDIf4VBWru1oYrbVLPtPX9tHd5atCzm2o7MYmETK0Y6vXIsYCWpZrfTnemLOyRaZvbNgAg8WtJMWbQadnuGAQXYcGMaDwf5xCbqzKL1_sDpjW7j-Xtgc7FZIkt6Xq92FFjw9ge6m_4AFsuPxOOT2Ex_aHLc0iT5VavGY6S0lzYn0dsfPQXolBr6Spx8XIRg9IkZOyI7Xh5MQhUtL7DidOa_Dcuh_ctb1qloInAxbPbM9hidzwDxEpwyAwVWmQ-SJLKeYGQsRUCZVxVDpXVFLFA60wjlCLkIlICh0eweq4GOtjIGmWGxAiWGZ7z_OUZ6EvLRTQgaAomKrD1UK2yVvZMiNxVINiYvSQWD0klR7qULOyXHqvFGMdGgttJJVRTROzTm7pLotO_vjsAjbbg1436Xb6D6ewZf9UhksasDqbzPUZrMv32Wg6OXc75xMX075J |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Physical-Data+Driven+Model+for+Denoising+of+Generator+State+Measurements&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Wang%2C+Huaiyuan&rft.au=Zhang%2C+Shiping&rft.au=Liu%2C+Baojin&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=74&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTIM.2025.3545981&rft.externalDocID=10904914 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |