Hybrid Physical-Data Driven Model for Denoising of Generator State Measurements

The measurement data of power systems are often mixed with a lot of noise due to the interference of the external environment. In order to eliminate the effect of noise, it is significant to denoise the noisy data to obtain the real state measurements. In order to deal with the problem of insufficie...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on instrumentation and measurement Ročník 74; s. 1 - 12
Hlavní autoři: Wang, Huaiyuan, Zhang, Shiping, Liu, Baojin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9456, 1557-9662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The measurement data of power systems are often mixed with a lot of noise due to the interference of the external environment. In order to eliminate the effect of noise, it is significant to denoise the noisy data to obtain the real state measurements. In order to deal with the problem of insufficient interpretability in existing data-driven denoising methods, a hybrid physical-data driven denoising model (PDDM) based on the stacked denoising autoencoder (SDAE) is proposed. First, the previous knowledge is extracted from the physical model of the generator. Physical constraints are designed based on the inherent relationships between rotor angle, angular frequency, and power. Second, based on SDAE deep-learning (DL) model, physical constraints are embedded into the loss function to guide the training of a neural network. The derivatives of denoised data are leveraged in anticipation of satisfying the differential-algebraic equations. The physical process is directly approximated by the neural network in this method, making the outputs satisfy the physical laws. The reliability and interpretability of the denoising results are improved. Meanwhile, the dependence on datasets is reduced by virtue of the hybrid physical-data driven mode. The robustness is still maintained. Finally, it is verified in the 39-bus New England system and a realistic regional power system. The real noisy data are also taken into account in testing to verify its extensibility. The test results show that the method proposed can achieve a satisfactory effect in both denoising accuracy and generalization capability.
AbstractList The measurement data of power systems are often mixed with a lot of noise due to the interference of the external environment. In order to eliminate the effect of noise, it is significant to denoise the noisy data to obtain the real state measurements. In order to deal with the problem of insufficient interpretability in existing data-driven denoising methods, a hybrid physical-data driven denoising model (PDDM) based on the stacked denoising autoencoder (SDAE) is proposed. First, the previous knowledge is extracted from the physical model of the generator. Physical constraints are designed based on the inherent relationships between rotor angle, angular frequency, and power. Second, based on SDAE deep-learning (DL) model, physical constraints are embedded into the loss function to guide the training of a neural network. The derivatives of denoised data are leveraged in anticipation of satisfying the differential-algebraic equations. The physical process is directly approximated by the neural network in this method, making the outputs satisfy the physical laws. The reliability and interpretability of the denoising results are improved. Meanwhile, the dependence on datasets is reduced by virtue of the hybrid physical-data driven mode. The robustness is still maintained. Finally, it is verified in the 39-bus New England system and a realistic regional power system. The real noisy data are also taken into account in testing to verify its extensibility. The test results show that the method proposed can achieve a satisfactory effect in both denoising accuracy and generalization capability.
Author Zhang, Shiping
Wang, Huaiyuan
Liu, Baojin
Author_xml – sequence: 1
  givenname: Huaiyuan
  orcidid: 0000-0003-4349-826X
  surname: Wang
  fullname: Wang, Huaiyuan
  email: 79749544@qq.com
  organization: Fujian Key Laboratory of New Energy Generation and Power Conversion, College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China
– sequence: 2
  givenname: Shiping
  orcidid: 0009-0006-6323-0200
  surname: Zhang
  fullname: Zhang, Shiping
  email: 740408941@qq.com
  organization: Fujian Key Laboratory of New Energy Generation and Power Conversion, College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China
– sequence: 3
  givenname: Baojin
  orcidid: 0000-0003-0017-7626
  surname: Liu
  fullname: Liu, Baojin
  email: lbj@fzu.edu.cn
  organization: Fujian Key Laboratory of New Energy Generation and Power Conversion, College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China
BookMark eNpNkM9LAkEUgIcwyKx7hw4LndfezM7PY2ipoBhk52HceVsrOmsza-B_34oeOj14fN978N2SXmgCEvJAYUgpmOfVbDFkwMSwEFwYTa9InwqhciMl65E-ANW54ULekNuUNgCgJFd9spwe17H22fv3MdWl2-Zj17psHOtfDNmi8bjNqiZmYwxNnerwlTVVNsGA0bXd-qN1LWYLdOkQcYehTXfkunLbhPeXOSCfb6-r0TSfLyez0cs8LxlXba5BlUYyqrTwiivjvGNrqtcOTFVQpcBrv5bGY-WhBC8ZeqOEQV1wLUqNxYA8ne_uY_NzwNTaTXOIoXtpO19yYMBFR8GZKmOTUsTK7mO9c_FoKdhTNttls6ds9pKtUx7PSo2I_3AD3FBe_AFTHWoL
CODEN IEIMAO
Cites_doi 10.3390/en15155329
10.1109/TDSC.2022.3223288
10.1109/JIOT.2020.3040195
10.1109/TKDE.2020.2983930
10.1109/TIM.2022.3227610
10.1109/PowerTech46648.2021.9494807
10.1109/TNNLS.2022.3230648
10.1016/j.ijepes.2020.106237
10.1109/LCOMM.2021.3091800
10.1109/TII.2021.3072397
10.1109/TPWRS.2019.2922671
10.3390/app9235200
10.1016/j.epsr.2020.106437
10.1109/TPWRS.2015.2400633
10.1109/TLA.2024.10620390
10.1016/j.asoc.2022.109217
10.1109/TNNLS.2023.3247163
10.3390/s20133738
10.1109/TSG.2021.3126268
10.1109/ICPS51807.2021.9416638
10.1109/TIM.2022.3212551
10.1109/TIM.2024.3403203
10.1109/ACCESS.2023.3299208
10.1109/ieeestd.2011.6111219
10.1109/JSEN.2022.3193943
10.1049/esi2.12118
10.1109/tpwrs.2024.3429339
10.1109/TPWRS.2015.2413935
10.1109/JRFID.2022.3213882
10.1109/ICEI.2018.00052
10.1016/j.epsr.2020.106547
10.1109/TSP.2018.2821648
10.1109/ACCESS.2023.3254448
10.1109/TSIPN.2016.2539680
10.1109/TSMC.2020.3005433
10.1049/iet-gtd.2020.0785
10.1109/tim.2022.3189743
10.1109/TPWRS.2020.2988352
10.1109/ACCESS.2020.2987324
10.1109/TPWRS.2022.3162473
10.1109/ACCESS.2021.3118300
10.1109/TIM.2022.3147887
10.1109/TPWRS.2022.3184981
10.1109/PESGM41954.2020.9282004
10.17775/cseejpes.2021.00290
10.3390/electronics12071590
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2025.3545981
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 12
ExternalDocumentID 10_1109_TIM_2025_3545981
10904914
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Fujian Province, China
  grantid: 2022J01113
  funderid: 10.13039/501100003392
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c247t-807c9621785d7479ada2b18ba09f31770d8db69defd0c0d62ed9759e83485c8e3
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001442976400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:14:33 EDT 2025
Sat Nov 29 08:09:14 EST 2025
Wed Aug 27 01:47:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-807c9621785d7479ada2b18ba09f31770d8db69defd0c0d62ed9759e83485c8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4349-826X
0000-0003-0017-7626
0009-0006-6323-0200
PQID 3176402045
PQPubID 85462
PageCount 12
ParticipantIDs crossref_primary_10_1109_TIM_2025_3545981
ieee_primary_10904914
proquest_journals_3176402045
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Vincent (ref33) 2010; 11
ref24
ref46
ref23
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref7
  doi: 10.3390/en15155329
– ident: ref16
  doi: 10.1109/TDSC.2022.3223288
– ident: ref24
  doi: 10.1109/JIOT.2020.3040195
– ident: ref26
  doi: 10.1109/TKDE.2020.2983930
– ident: ref35
  doi: 10.1109/TIM.2022.3227610
– ident: ref40
  doi: 10.1109/PowerTech46648.2021.9494807
– ident: ref36
  doi: 10.1109/TNNLS.2022.3230648
– ident: ref44
  doi: 10.1016/j.ijepes.2020.106237
– ident: ref46
  doi: 10.1109/LCOMM.2021.3091800
– ident: ref5
  doi: 10.1109/TII.2021.3072397
– ident: ref10
  doi: 10.1109/TPWRS.2019.2922671
– ident: ref19
  doi: 10.3390/app9235200
– ident: ref43
  doi: 10.1016/j.epsr.2020.106437
– ident: ref8
  doi: 10.1109/TPWRS.2015.2400633
– ident: ref13
  doi: 10.1109/TLA.2024.10620390
– ident: ref28
  doi: 10.1016/j.asoc.2022.109217
– ident: ref30
  doi: 10.1109/TNNLS.2023.3247163
– ident: ref42
  doi: 10.3390/s20133738
– ident: ref6
  doi: 10.1109/TSG.2021.3126268
– ident: ref12
  doi: 10.1109/ICPS51807.2021.9416638
– ident: ref21
  doi: 10.1109/TIM.2022.3212551
– ident: ref4
  doi: 10.1109/TIM.2024.3403203
– ident: ref25
  doi: 10.1109/ACCESS.2023.3299208
– ident: ref31
  doi: 10.1109/ieeestd.2011.6111219
– ident: ref34
  doi: 10.1109/JSEN.2022.3193943
– ident: ref3
  doi: 10.1049/esi2.12118
– ident: ref9
  doi: 10.1109/tpwrs.2024.3429339
– ident: ref20
  doi: 10.1109/TPWRS.2015.2413935
– ident: ref38
  doi: 10.1109/JRFID.2022.3213882
– ident: ref45
  doi: 10.1109/ICEI.2018.00052
– ident: ref39
  doi: 10.1016/j.epsr.2020.106547
– ident: ref18
  doi: 10.1109/TSP.2018.2821648
– ident: ref22
  doi: 10.1109/ACCESS.2023.3254448
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref33
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: ref17
  doi: 10.1109/TSIPN.2016.2539680
– ident: ref47
  doi: 10.1109/TSMC.2020.3005433
– ident: ref11
  doi: 10.1049/iet-gtd.2020.0785
– ident: ref15
  doi: 10.1109/tim.2022.3189743
– ident: ref37
  doi: 10.1109/TPWRS.2020.2988352
– ident: ref27
  doi: 10.1109/ACCESS.2020.2987324
– ident: ref29
  doi: 10.1109/TPWRS.2022.3162473
– ident: ref14
  doi: 10.1109/ACCESS.2021.3118300
– ident: ref32
  doi: 10.1109/TIM.2022.3147887
– ident: ref1
  doi: 10.1109/TPWRS.2022.3184981
– ident: ref41
  doi: 10.1109/PESGM41954.2020.9282004
– ident: ref2
  doi: 10.17775/cseejpes.2021.00290
– ident: ref23
  doi: 10.3390/electronics12071590
SSID ssj0007647
Score 2.448571
Snippet The measurement data of power systems are often mixed with a lot of noise due to the interference of the external environment. In order to eliminate the effect...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Constraints
Data recovery
deep learning (DL)
Differential equations
Generators
Machine learning
Neural networks
Noise
Noise measurement
Noise reduction
Phasor measurement units
physics-informed neural networks (PINNs)
Pollution measurement
Power measurement
power system
Power system stability
stacked denoising autoencoder (SDAE)
Training
Title Hybrid Physical-Data Driven Model for Denoising of Generator State Measurements
URI https://ieeexplore.ieee.org/document/10904914
https://www.proquest.com/docview/3176402045
Volume 74
WOSCitedRecordID wos001442976400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BBRIMPEoRhYI8sDCkzdPxjYhSFYmWDgV1ixzbkSqhFDUpEv8e20mhCDGwZUgi6853_r7zPQCuo9TLqCepE9BIExSBQttcgI4bCIUcFUU7reHlMR6P2WyGk7pY3dbCKKVs8pnqmkd7ly8XYmVCZT2TRBiiGVu9Hce0Ktb6crsxDasGmZ62YA0L1neSLvamDyPNBP2oG2i8gMz7cQbZoSq_PLE9XgaH_1zYERzUOJLcVoo_hi2VN2F_o7tgE3ZtdqcoTuBp-GEKs8ikVorT5yUn_aXxdMRMQ3slGruSvsoXcxM7IIuMVP2oNSMnFo-S0XcwsWjB8-B-ejd06kkKjvDDuDQdhwVSzT5YJDV_QC65n3os5S5mGkDErmQypShVJl3hSuoriXGEigUhiwRTwSk08kWuzoDwNNMQhIWp6TxPOU0DTxggoHzmIgtlG27Wsk3eqoYZiSUaLiZaD4nRQ1LroQ0tI8uN9yoxtqGz1kZSm1SR6HVSQ3bD6PyPzy5gz_y9CpB0oFEuV-oSdsR7OS-WV3a3fAIurbsC
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4hHgIGnkUUCnhgYQg4ieP4RkSpWtEWhoK6RYntSJVQg_pA4t9jOykUIQa2DIli3fnO33e-B8BllPk59xX3Qh4ZgiJRGpsL0aOh1Jii5uimNbx0435fDIf4VBWru1oYrbVLPtPX9tHd5atCzm2o7MYmETK0Y6vXIsYCWpZrfTnemLOyRaZvbNgAg8WtJMWbQadnuGAQXYcGMaDwf5xCbqzKL1_sDpjW7j-Xtgc7FZIkt6Xq92FFjw9ge6m_4AFsuPxOOT2Ex_aHLc0iT5VavGY6S0lzYn0dsfPQXolBr6Spx8XIRg9IkZOyI7Xh5MQhUtL7DidOa_Dcuh_ctb1qloInAxbPbM9hidzwDxEpwyAwVWmQ-SJLKeYGQsRUCZVxVDpXVFLFA60wjlCLkIlICh0eweq4GOtjIGmWGxAiWGZ7z_OUZ6EvLRTQgaAomKrD1UK2yVvZMiNxVINiYvSQWD0klR7qULOyXHqvFGMdGgttJJVRTROzTm7pLotO_vjsAjbbg1436Xb6D6ewZf9UhksasDqbzPUZrMv32Wg6OXc75xMX075J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Physical-Data+Driven+Model+for+Denoising+of+Generator+State+Measurements&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Wang%2C+Huaiyuan&rft.au=Zhang%2C+Shiping&rft.au=Liu%2C+Baojin&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=74&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTIM.2025.3545981&rft.externalDocID=10904914
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon