Generalized LDPC Codes With Low-Complexity Decoding and Fast Convergence

We consider generalized low-density parity-check (GLDPC) codes with component codes that are duals of Cordaro-Wagner codes. Two efficient decoding algorithms are proposed: one based on Hartmann-Rudolph processing, analogous to Sum-Product decoding, and another based on evaluating two hypotheses per...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE wireless communications letters Ročník 14; číslo 11; s. 3700 - 3704
Hlavní autoři: Simegn, Dawit, Artemasov, Dmitry, Andreev, Kirill, Rybin, Pavel, Frolov, Alexey
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.11.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-2337, 2162-2345
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider generalized low-density parity-check (GLDPC) codes with component codes that are duals of Cordaro-Wagner codes. Two efficient decoding algorithms are proposed: one based on Hartmann-Rudolph processing, analogous to Sum-Product decoding, and another based on evaluating two hypotheses per bit, referred to as the Min-Sum decoder. Both algorithms are derived using latent variables and a appropriate message-passing schedule. A quantized, protograph-based density evolution procedure is used to optimize GLDPC codes for Min-Sum decoding. Compared to 5G LDPC codes, the proposed GLDPC codes offer similar performance at 50 iterations and significantly better convergence and performance at 10 iterations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2162-2337
2162-2345
DOI:10.1109/LWC.2025.3600912