HHI-Assist: A Dataset and Benchmark of Human-Human Interaction in Physical Assistance Scenario

The increasing labor shortage and aging population underline the need for assistive robots to support human care recipients. To enable safe and responsive assistance, robots require accurate human motion prediction in physical interaction scenarios. However, this remains a challenging task due to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters Jg. 10; H. 9; S. 8746 - 8753
Hauptverfasser: Saadatnejad, Saeed, Hosseininejad, Reyhaneh, Barreiros, Jose, Tsui, Katherine M., Alahi, Alexandre
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2377-3766, 2377-3766
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The increasing labor shortage and aging population underline the need for assistive robots to support human care recipients. To enable safe and responsive assistance, robots require accurate human motion prediction in physical interaction scenarios. However, this remains a challenging task due to the variability of assistive settings and the complexity of coupled dynamics in physical interactions. In this work, we address these challenges through two key contributions: (1) HHI-Assist , a dataset comprising motion capture clips of human-human interactions in assistive tasks; and (2) a conditional Transformer-based denoising diffusion model for predicting the poses of interacting agents. Our model effectively captures the coupled dynamics between caregivers and care receivers, demonstrating improvements over baselines and strong generalization to unseen scenarios. By advancing interaction-aware motion prediction and introducing a new dataset, our work has the potential to significantly enhance robotic assistance policies.
AbstractList The increasing labor shortage and aging population underline the need for assistive robots to support human care recipients. To enable safe and responsive assistance, robots require accurate human motion prediction in physical interaction scenarios. However, this remains a challenging task due to the variability of assistive settings and the complexity of coupled dynamics in physical interactions. In this work, we address these challenges through two key contributions: (1) HHI-Assist, a dataset comprising motion capture clips of human-human interactions in assistive tasks; and (2) a conditional Transformer-based denoising diffusion model for predicting the poses of interacting agents. Our model effectively captures the coupled dynamics between caregivers and care receivers, demonstrating improvements over baselines and strong generalization to unseen scenarios. By advancing interaction-aware motion prediction and introducing a new dataset, our work has the potential to significantly enhance robotic assistance policies.
Author Barreiros, Jose
Saadatnejad, Saeed
Tsui, Katherine M.
Hosseininejad, Reyhaneh
Alahi, Alexandre
Author_xml – sequence: 1
  givenname: Saeed
  orcidid: 0000-0001-7310-8686
  surname: Saadatnejad
  fullname: Saadatnejad, Saeed
  email: saeed.saadatnejad@epfl.ch
  organization: VITA Laboratory, EPFL, Lausanne, Switzerland
– sequence: 2
  givenname: Reyhaneh
  orcidid: 0009-0003-3638-0260
  surname: Hosseininejad
  fullname: Hosseininejad, Reyhaneh
  email: reyhaneh.hosseininejad@epfl.ch
  organization: VITA Laboratory, EPFL, Lausanne, Switzerland
– sequence: 3
  givenname: Jose
  orcidid: 0000-0002-6558-8656
  surname: Barreiros
  fullname: Barreiros, Jose
  email: jose.barreiros@tri.global
  organization: Toyota Research Institute, Cambridge, MA, USA
– sequence: 4
  givenname: Katherine M.
  orcidid: 0000-0003-1262-4083
  surname: Tsui
  fullname: Tsui, Katherine M.
  email: kate.tsui@tri.global
  organization: Toyota Research Institute, Cambridge, MA, USA
– sequence: 5
  givenname: Alexandre
  orcidid: 0000-0002-5004-1498
  surname: Alahi
  fullname: Alahi, Alexandre
  email: alexandre.alahi@epfl.ch
  organization: VITA Laboratory, EPFL, Lausanne, Switzerland
BookMark eNpNkEtPwzAQhC1UJErpnQMHS5xT_IjtmFsoj1SqBOJxxXKdjZrSOsVOD_33pKQSXHb3MDOr-c7RwDceELqkZEIp0Tfz13zCCBMTLjJJKD1BQ8aVSriScvDvPkPjGFeEECqY4loM0WdRzJI8xjq2tzjH97a1EVpsfYnvwLvlxoYv3FS42G2sT34nnvkWgnVt3Xhce_yy3Mfa2TXuY6x3gN8ceBvq5gKdVnYdYXzcI_Tx-PA-LZL589Nsms8Tx1LVJooySQjPwEIqATImhHAy4ymhJWdEW75gLi116TTJSgsLLqmuJLM2peWiFHyErvvcbWi-dxBbs2p2wXcvDWeplCqVOutUpFe50MQYoDLbUHcN94YScwBpOpDmANIcQXaWq95SA8CfnBJFM634D26gbwQ
CODEN IRALC6
Cites_doi 10.1109/ICCV51070.2023.00880
10.1109/ICCV.2019.00554
10.23919/ECC.2018.8550170
10.1109/LRA.2020.3010742
10.1609/aaai.v33i01.33018553
10.1109/LRA.2024.3374188
10.1016/j.trc.2022.103705
10.1145/3450626.3459670
10.1109/cvpr42600.2020.00724
10.1109/ICCV48922.2021.01144
10.1007/978-3-030-01249-6_37
10.1109/ICRA.2019.8794134
10.1109/WACV56688.2023.00479
10.1109/ROBOT.2009.5152855
10.1007/978-3-030-58545-7_20
10.1109/CVPR.2019.00589
10.1093/restud/rdab031
10.1109/ICCV51070.2023.00875
10.1109/CVPR52688.2022.01271
10.1109/CVPR52733.2024.00163
10.1109/LRA.2018.2861569
10.1109/ICCV.2019.00958
10.1109/CVPR.2018.00548
10.1109/CVPR52688.2022.01042
10.1109/TPAMI.2013.248
10.1109/ACCESS.2024.3400604
10.1109/ICCV51070.2023.01385
10.1109/ICCV48922.2021.01305
10.1109/3DV53792.2021.00066
10.1109/ICCV.2015.494
10.1109/ICCV48922.2021.01102
10.1177/0278364921990671
10.7759/cureus.42905
10.1109/ICCV.2017.361
10.1109/IROS45743.2020.9340705
10.1109/LRA.2021.3086666
10.1038/d41586-024-01184-4
10.1109/ICRA48891.2023.10160399
10.1109/CVPR52688.2022.00633
10.1109/CVPR.2017.497
10.1109/CVPR52729.2023.01632
10.1109/IROS.2015.7353843
10.15607/RSS.2023.XIX.026
10.1109/LRA.2019.2895266
10.1109/CYBER.2018.8688348
10.1007/978-3-031-72655-2_20
10.1109/ICCV51070.2023.00355
10.1109/TPAMI.2021.3070543
10.1109/ICCV51070.2023.00220
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2025.3586011
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 8753
ExternalDocumentID 10_1109_LRA_2025_3586011
11071897
Genre orig-research
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c247t-71260038eae46ee82555c683401d3209a3b2c4d9dc908daeb3619f62aa41dbd53
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001534489800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sat Nov 22 13:41:14 EST 2025
Sat Nov 29 07:43:07 EST 2025
Wed Aug 27 02:13:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-71260038eae46ee82555c683401d3209a3b2c4d9dc908daeb3619f62aa41dbd53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7310-8686
0009-0003-3638-0260
0000-0002-6558-8656
0000-0002-5004-1498
0000-0003-1262-4083
PQID 3246674698
PQPubID 4437225
PageCount 8
ParticipantIDs proquest_journals_3246674698
crossref_primary_10_1109_LRA_2025_3586011
ieee_primary_11071897
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
Ho (ref17) 2020
ref53
ref52
ref11
ref55
ref10
ref54
ref16
ref19
Tashiro (ref48) 2021
ref51
Maaten (ref50) 2008; 9
ref46
ref45
ref47
ref44
ref43
Meredith (ref33) 2001; 211
Hosseininejad (ref18) 2025
ref8
(ref36) 2023
Saadatnejad (ref42) 2022
ref7
ref9
ref3
ref6
ref5
ref40
ref34
ref37
ref31
ref30
ref32
ref2
(ref35) 2024
ref1
ref39
ref38
Saadatnejad (ref41) 2024
ref24
ref23
Bahari (ref4) 2025
ref26
ref25
ref20
ref22
ref21
Tedrake (ref49) 2019
ref28
ref27
ref29
ref60
References_xml – ident: ref47
  doi: 10.1109/ICCV51070.2023.00880
– ident: ref29
  doi: 10.1109/ICCV.2019.00554
– ident: ref54
  doi: 10.23919/ECC.2018.8550170
– ident: ref2
  doi: 10.1109/LRA.2020.3010742
– ident: ref25
  doi: 10.1609/aaai.v33i01.33018553
– ident: ref43
  doi: 10.1109/LRA.2024.3374188
– ident: ref40
  doi: 10.1016/j.trc.2022.103705
– ident: ref38
  doi: 10.1145/3450626.3459670
– ident: ref13
  doi: 10.1109/cvpr42600.2020.00724
– ident: ref6
  doi: 10.1109/ICCV48922.2021.01144
– start-page: 22680
  volume-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
  year: 2025
  ident: ref18
  article-title: MotionMap: Representing multimodality in human pose forecasting
– ident: ref52
  doi: 10.1007/978-3-030-01249-6_37
– ident: ref8
  doi: 10.1109/ICRA.2019.8794134
– ident: ref16
  doi: 10.1109/WACV56688.2023.00479
– ident: ref45
  doi: 10.1109/ROBOT.2009.5152855
– ident: ref57
  doi: 10.1007/978-3-030-58545-7_20
– ident: ref59
  doi: 10.1109/CVPR.2019.00589
– ident: ref1
  doi: 10.1093/restud/rdab031
– ident: ref9
  doi: 10.1109/ICCV51070.2023.00875
– ident: ref15
  doi: 10.1109/CVPR52688.2022.01271
– volume: 9
  year: 2008
  ident: ref50
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref22
  doi: 10.1109/CVPR52733.2024.00163
– ident: ref12
  doi: 10.1109/LRA.2018.2861569
– year: 2019
  ident: ref49
  article-title: Drake: Model-based design and verification for robotics
– start-page: 12301
  volume-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
  year: 2025
  ident: ref4
  article-title: Certified human trajectory prediction
– ident: ref30
  doi: 10.1109/ICCV.2019.00958
– ident: ref26
  doi: 10.1109/CVPR.2018.00548
– ident: ref39
  doi: 10.1109/CVPR52688.2022.01042
– ident: ref19
  doi: 10.1109/TPAMI.2013.248
– ident: ref34
  doi: 10.1109/ACCESS.2024.3400604
– ident: ref60
  doi: 10.1109/ICCV51070.2023.01385
– ident: ref27
  doi: 10.1109/ICCV48922.2021.01305
– volume-title: Proc. Symp. Eur. Assoc. Res. Transp.
  year: 2022
  ident: ref42
  article-title: Pedestrian 3D bounding box prediction
– ident: ref3
  doi: 10.1109/3DV53792.2021.00066
– ident: ref14
  doi: 10.1109/ICCV.2015.494
– ident: ref46
  doi: 10.1109/ICCV48922.2021.01102
– year: 2023
  ident: ref36
  article-title: Skeleton marker set: Core (50)
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2024
  ident: ref41
  article-title: Social-transmotion: Promptable human trajectory prediction
– ident: ref23
  doi: 10.1177/0278364921990671
– ident: ref37
  doi: 10.7759/cureus.42905
– ident: ref53
  doi: 10.1109/ICCV.2017.361
– ident: ref7
  doi: 10.1109/IROS45743.2020.9340705
– ident: ref51
  doi: 10.1109/LRA.2021.3086666
– ident: ref55
  doi: 10.1038/d41586-024-01184-4
– ident: ref44
  doi: 10.1109/ICRA48891.2023.10160399
– ident: ref28
  doi: 10.1109/CVPR52688.2022.00633
– ident: ref32
  doi: 10.1109/CVPR.2017.497
– ident: ref56
  doi: 10.1109/CVPR52729.2023.01632
– ident: ref24
  doi: 10.1109/IROS.2015.7353843
– start-page: 6840
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2020
  ident: ref17
  article-title: Denoising diffusion probabilistic models
– ident: ref10
  doi: 10.15607/RSS.2023.XIX.026
– ident: ref11
  doi: 10.1109/LRA.2019.2895266
– ident: ref21
  doi: 10.1109/CYBER.2018.8688348
– ident: ref20
  doi: 10.1007/978-3-031-72655-2_20
– ident: ref58
  doi: 10.1109/ICCV51070.2023.00355
– ident: ref31
  doi: 10.1109/TPAMI.2021.3070543
– ident: ref5
  doi: 10.1109/ICCV51070.2023.00220
– volume: 211
  start-page: 241
  issue: 241244
  year: 2001
  ident: ref33
  article-title: Motion capture file formats explained
  publication-title: Dept. Comput. Sci., Univ. Sheffield
– start-page: 24804
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2021
  ident: ref48
  article-title: CSDI: Conditional score-based diffusion models for probabilistic time series imputation
– year: 2024
  ident: ref35
  article-title: Prime 17w
SSID ssj0001527395
Score 2.3019602
Snippet The increasing labor shortage and aging population underline the need for assistive robots to support human care recipients. To enable safe and responsive...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 8746
SubjectTerms Data sets for robot learning
Datasets
Diffusion models
Dynamics
Human motion
Human-robot interaction
intention recognition
Motion capture
Noise reduction
physical human-robot interaction
Predictive models
Receivers
Robot dynamics
Robots
Service robots
Skeleton
Transformers
Title HHI-Assist: A Dataset and Benchmark of Human-Human Interaction in Physical Assistance Scenario
URI https://ieeexplore.ieee.org/document/11071897
https://www.proquest.com/docview/3246674698
Volume 10
WOSCitedRecordID wos001534489800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library (LUT)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7cxYMefIvrY8nBi4do27RN4m3VlRVUxAfsyZImKS5iV3arR3-7k7SLinjwUkJpQplv2plvkpkB2EeTUahYKVoUMaexzjXNBWNUS9SPiOdaMOWbTfDrazEcypsmWd3nwlhr_eEze-iGfi_fjPWbC5UdOa4SCslb0OKc18laXwEVV0pMJrOtyEAeXd72kABGySFLBPKO8Ifp8b1Ufv2AvVU5X_7n-6zAUuM-kl6N9yrM2XINFr8VFVyHx8HggqLUEb9j0iNnqkJDVRFVGnKCKvn0oibPZFwQH76n_kp8XLBOcSCjktw04JF6GacY5E7bEnn1eAMezvv3pwPadFGgOop5RXnoatAzYZWNU2uRESaJTgVDYmVYFEjF8kjHRhotA2EUkmvkVEUaKRWHJjcJ24R2OS7tFhAuAmNydLGkRkeEByrNUxGmlifuDrcdOJgJOHuti2VknmQEMkMwMgdG1oDRgQ0n0K_nGll2YHcGSdZ8TtMMvb405a7Z5fYf03Zgwa1en_7ahXY1ebN7MK_fq9F00oXW1Ue_6_XlE4p8vVg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS-wwEB_8AvXgt7h-vRy8eIi2Tdok3tYvVt66iPrAkyVNUhSxK2v173eSdvGJePBSQmnaMr9pZ36TzAzAHpqMUnOtaVlyQbkpDC0kY9Qo1I9EFEYyHZpNiMFA3t2pqzZZPeTCOOfC5jN34IdhLd8OzZsPlR16rhJLJSZhOuU8iZt0rc-Qii8mptLxYmSkDvvXXaSASXrAUonMI_5ifEI3lW-_4GBXzhd_-UZLsNA6kKTbIL4ME65agfn_ygquwn2vd0FR7ojgEemSU12jqaqJriw5RqV8eNajJzIsSQjg03AkITLYJDmQx4pctfCR5jZeNciNcRUy6-Ea_Ds_uz3p0baPAjUJFzUVsa9Cz6TTjmfOISdMU5NJhtTKsiRSmhWJ4VZZoyJpNdJrZFVllmjNY1vYlK3DVDWs3AYQISNrC3SylEFXREQ6KzIZZ06k_oxwHdgfCzh_acpl5IFmRCpHMHIPRt6C0YE1L9DP61pZdmB7DEneflCvOfp9WSZ8u8vNH6b9gdne7WU_718M_m7BnH9SsxdsG6bq0ZvbgRnzXj--jnaD1nwAFAy_bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HHI-Assist%3A+A+Dataset+and+Benchmark+of+Human-Human+Interaction+in+Physical+Assistance+Scenario&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Saadatnejad%2C+Saeed&rft.au=Hosseininejad%2C+Reyhaneh&rft.au=Barreiros%2C+Jose&rft.au=Tsui%2C+Katherine+M&rft.date=2025-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=10&rft.issue=12&rft.spage=8746&rft.epage=8753&rft_id=info:doi/10.1109%2FLRA.2025.3586011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon