Robust Multidimensional Graph Neural Networks for Signal Processing in Wireless Communications With Edge-Graph Information Bottleneck
Signal processing is crucial for satisfying the high data rate requirements of future sixth-generation (6G) wireless networks. However, the rapid growth of wireless networks has brought about massive data traffic, which hinders the application of traditional optimization theory-based algorithms. Mea...
Uloženo v:
| Vydáno v: | IEEE transactions on signal processing Ročník 73; s. 2688 - 2703 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Signal processing is crucial for satisfying the high data rate requirements of future sixth-generation (6G) wireless networks. However, the rapid growth of wireless networks has brought about massive data traffic, which hinders the application of traditional optimization theory-based algorithms. Meanwhile, traditional graph neural networks (GNNs) focus on compressing inputs onto vertices to update representations, which often leads to their inability to effectively distinguish input features and severely weakens performance. In this context, designing efficient signal processing frameworks becomes imperative. Moreover, actual scenarios are susceptible to multipath interference and noise, resulting in specific differences between the received and actual information. To address these challenges, this paper incorporates multidimensional graph neural networks (MDGNNs) with edge-graph information bottleneck (EGIB) to design a robust framework for signal processing. Specifically, MDGNNs utilize hyper-edges instead of vertices to update representations to avoid indistinguishable features and reduce information loss, while EGIB encourages providing minimal sufficient information about outputs to avoid aggregation of irrelevant information. We numerically demonstrate that compared with existing frameworks, the proposed frameworks achieve excellent performance in terms of spectrum efficiency (SE) and complexity under multiple signal processing tasks. Remarkably, as the interference noise increases, the SE performance of the proposed frameworks gradually stabilizes. This reveals the proposed frameworks have excellent robustness in interference prone environments, especially in wireless policies related to channel matrices. |
|---|---|
| AbstractList | Signal processing is crucial for satisfying the high data rate requirements of future sixth-generation (6G) wireless networks. However, the rapid growth of wireless networks has brought about massive data traffic, which hinders the application of traditional optimization theory-based algorithms. Meanwhile, traditional graph neural networks (GNNs) focus on compressing inputs onto vertices to update representations, which often leads to their inability to effectively distinguish input features and severely weakens performance. In this context, designing efficient signal processing frameworks becomes imperative. Moreover, actual scenarios are susceptible to multipath interference and noise, resulting in specific differences between the received and actual information. To address these challenges, this paper incorporates multidimensional graph neural networks (MDGNNs) with edge-graph information bottleneck (EGIB) to design a robust framework for signal processing. Specifically, MDGNNs utilize hyper-edges instead of vertices to update representations to avoid indistinguishable features and reduce information loss, while EGIB encourages providing minimal sufficient information about outputs to avoid aggregation of irrelevant information. We numerically demonstrate that compared with existing frameworks, the proposed frameworks achieve excellent performance in terms of spectrum efficiency (SE) and complexity under multiple signal processing tasks. Remarkably, as the interference noise increases, the SE performance of the proposed frameworks gradually stabilizes. This reveals the proposed frameworks have excellent robustness in interference prone environments, especially in wireless policies related to channel matrices. |
| Author | Zhang, Jiayi Zhu, Yiyang Liu, Ziheng Shi, Enyu Ai, Bo |
| Author_xml | – sequence: 1 givenname: Ziheng orcidid: 0009-0000-5495-1619 surname: Liu fullname: Liu, Ziheng email: zihengliu@bjtu.edu.cn organization: State Key Laboratory of Advanced Rail Autonomous Operation, School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China – sequence: 2 givenname: Jiayi orcidid: 0000-0003-2434-4329 surname: Zhang fullname: Zhang, Jiayi email: jiayizhang@bjtu.edu.cn organization: State Key Laboratory of Advanced Rail Autonomous Operation, School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China – sequence: 3 givenname: Yiyang orcidid: 0009-0000-7641-7353 surname: Zhu fullname: Zhu, Yiyang email: yiyangzhu@bjtu.edu.cn organization: State Key Laboratory of Advanced Rail Autonomous Operation, School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China – sequence: 4 givenname: Enyu orcidid: 0009-0007-9971-6066 surname: Shi fullname: Shi, Enyu email: enyushi@bjtu.edu.cn organization: State Key Laboratory of Advanced Rail Autonomous Operation, School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China – sequence: 5 givenname: Bo orcidid: 0000-0001-6850-0595 surname: Ai fullname: Ai, Bo email: boai@bjtu.edu.cn organization: State Key Laboratory of Advanced Rail Autonomous Operation, School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China |
| BookMark | eNpFkEtP3DAUhS0EEq_uu2BhiXWm16_EWcKIl0QpKlTtLkqcm8GQ2IPtCPED-N_1dJC6uq9zPumeQ7LrvENCvjJYMAb1t8eH-wUHrhZCVRJA7ZADVktWgKzK3dyDEoXS1Z99chjjMwCTsi4PyMdP380x0e_zmGxvJ3TReteO9Cq06yd6h3PIwx2mNx9eIh18oA92tRHcB28wRutW1Dr62wYc80iXfppmZ02bMifmfXqiF_0Kiy3wxmXE9O9Iz31KIzo0L8dkb2jHiF8-6xH5dXnxuLwubn9c3SzPbgvDZZWKsgUYetOjUVpUlYCSIXDJJXItew1DNxjRKeS1bivRsb4U2nDVMZRao6rEETndctfBv84YU_Ps55C_iY3gsiw1q7nIKtiqTPAxBhyadbBTG94bBs0m7CaH3WzCbj7DzpaTrcUi4n85A6a0VOIvpBl_LQ |
| CODEN | ITPRED |
| Cites_doi | 10.1109/TMLCN.2024.3354872 10.1109/ITW.2015.7133169 10.1109/MCOM.001.2200810 10.1109/TWC.2024.3478232 10.1109/TSP.2023.3244104 10.1109/JSAC.2021.3126087 10.1109/JSTSP.2023.3239189 10.1109/TPAMI.2023.3235931 10.1109/TSP.2018.2866382 10.1109/COMST.2023.3349276 10.1109/COMST.2023.3300664 10.1109/MWC.001.1900488 10.1109/TCOMM.2023.3269849 10.1109/TPAMI.2023.3337534 10.1109/TWC.2022.3219840 10.1109/TSP.2020.2988255 10.1109/TWC.2020.3033334 10.1109/TWC.2023.3305124 10.1109/LCOMM.2018.2825444 10.1109/JPROC.2024.3404491 10.1109/TWC.2024.3512663 10.1109/TWC.2021.3100133 10.1109/TWC.2015.2400437 10.1109/TCOMM.2019.2957482 10.1109/TWC.2023.3325735 10.1109/JSAC.2020.3000826 10.1609/aaai.v36i4.20335 10.1609/aaai.v38i8.28738 10.1007/s11432-020-2955-6 10.1109/MNET.001.1900287 10.1109/MWC.015.2300595 10.1109/TSP.2011.2147784 10.1109/TWC.2021.3069638 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TSP.2025.3574005 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 2703 |
| ExternalDocumentID | 10_1109_TSP_2025_3574005 11015845 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 2024YJS138 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 62471027 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 62221001 funderid: 10.13039/501100001809 – fundername: ZTE Industry-University-Institute Cooperation Funds grantid: IA20250115003-PO0001; IA20240709018; IA20240319002 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c247t-6a00fdcdec583773061e02424e284d80fbfc3b5e298a73b1d638c25b1e488e573 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001534482200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Sat Nov 01 15:20:07 EDT 2025 Sat Nov 29 07:39:01 EST 2025 Wed Aug 27 02:13:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-6a00fdcdec583773061e02424e284d80fbfc3b5e298a73b1d638c25b1e488e573 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0000-7641-7353 0000-0001-6850-0595 0009-0007-9971-6066 0009-0000-5495-1619 0000-0003-2434-4329 |
| PQID | 3246681923 |
| PQPubID | 85478 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_TSP_2025_3574005 ieee_primary_11015845 proquest_journals_3246681923 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref14 ref36 ref30 Tishby (ref31) 2000 ref11 ref33 ref10 ref32 Yu (ref37) 2021 ref2 ref1 ref17 ref16 ref38 ref19 ref18 Poole (ref39) 2019 Zhang (ref8) 2025 Xu (ref23) 2018 ref24 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Wu (ref35) 2020; 33 ref29 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – year: 2025 ident: ref8 article-title: Multi-agent reinforcement learning in wireless distributed networks for 6G – ident: ref25 doi: 10.1109/TMLCN.2024.3354872 – ident: ref32 doi: 10.1109/ITW.2015.7133169 – ident: ref19 doi: 10.1109/MCOM.001.2200810 – ident: ref28 doi: 10.1109/TWC.2024.3478232 – ident: ref11 doi: 10.1109/TSP.2023.3244104 – ident: ref33 doi: 10.1109/JSAC.2021.3126087 – ident: ref9 doi: 10.1109/JSTSP.2023.3239189 – ident: ref34 doi: 10.1109/TPAMI.2023.3235931 – ident: ref15 doi: 10.1109/TSP.2018.2866382 – start-page: 5171 volume-title: Proc. ICML year: 2019 ident: ref39 article-title: On variational bounds of mutual information – ident: ref4 doi: 10.1109/COMST.2023.3349276 – ident: ref12 doi: 10.1109/COMST.2023.3300664 – ident: ref7 doi: 10.1109/MWC.001.1900488 – ident: ref14 doi: 10.1109/TCOMM.2023.3269849 – volume: 33 start-page: 20437 year: 2020 ident: ref35 article-title: Graph information bottleneck publication-title: NeurIPS – ident: ref36 doi: 10.1109/TPAMI.2023.3337534 – ident: ref20 doi: 10.1109/TWC.2022.3219840 – ident: ref29 doi: 10.1109/TSP.2020.2988255 – ident: ref13 doi: 10.1109/TWC.2020.3033334 – ident: ref24 doi: 10.1109/TWC.2023.3305124 – ident: ref17 doi: 10.1109/LCOMM.2018.2825444 – ident: ref1 doi: 10.1109/JPROC.2024.3404491 – ident: ref27 doi: 10.1109/TWC.2024.3512663 – volume-title: Proc. ICLR year: 2021 ident: ref37 article-title: Graph information bottleneck for subgraph recognition – ident: ref26 doi: 10.1109/TWC.2021.3100133 – ident: ref2 doi: 10.1109/TWC.2015.2400437 – ident: ref16 doi: 10.1109/TCOMM.2019.2957482 – ident: ref30 doi: 10.1109/TWC.2023.3325735 – ident: ref3 doi: 10.1109/JSAC.2020.3000826 – ident: ref38 doi: 10.1609/aaai.v36i4.20335 – volume-title: Proc. ICLR year: 2018 ident: ref23 article-title: How powerful are graph neural networks? – year: 2000 ident: ref31 article-title: The information bottleneck method – ident: ref21 doi: 10.1609/aaai.v38i8.28738 – ident: ref6 doi: 10.1007/s11432-020-2955-6 – ident: ref5 doi: 10.1109/MNET.001.1900287 – ident: ref22 doi: 10.1109/MWC.015.2300595 – ident: ref10 doi: 10.1109/TSP.2011.2147784 – ident: ref18 doi: 10.1109/TWC.2021.3069638 |
| SSID | ssj0014496 |
| Score | 2.4673865 |
| Snippet | Signal processing is crucial for satisfying the high data rate requirements of future sixth-generation (6G) wireless networks. However, the rapid growth of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2688 |
| SubjectTerms | Apexes Communications traffic Edge-graph information bottleneck Graph neural networks Graph theory Interference multidimensional graph neural networks Neural networks Optimization Representations robust Robustness Signal processing Signal processing algorithms Silicon Task complexity Training Wireless communication Wireless communications Wireless networks |
| Title | Robust Multidimensional Graph Neural Networks for Signal Processing in Wireless Communications With Edge-Graph Information Bottleneck |
| URI | https://ieeexplore.ieee.org/document/11015845 https://www.proquest.com/docview/3246681923 |
| Volume | 73 |
| WOSCitedRecordID | wos001534482200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLVoxQADzyIKBXlgYXDrPGwnI6AWpqqiReoWxY-UCpSiJuUP-G-unRSoEANbnNhW5Gv7Hj_OuQhdUSp97QtJAqYiErJYk9TjPlGcC5Vxk0oqXbAJMRxG02k8qsnqjgtjjHGXz0zXPrqzfL1QK7tV1gNX5YHDZA3UEIJXZK2vI4MwdMG4AC8EhEViuj6TpHFvMh7BStBn3YAJ6LNswwe5oCq_ZmLnXgb7__yxA7RX40h8Uxn-EG2Z_Ajt_lAXPEYfjwu5KkrsOLbaqvhXChz43opUYyvLAYlhdQ-8wIBe8Xg-sxlq9gDUguc5thdkXyGJN8gkBbwvn3FfzwypKqyZTfYjvl1YbeTcqJcWehr0J3cPpI66QJQfipLwlNJMK20Ug8UrTADcM9aRhwY8mY5oJjMVSGb8OEpFID0NI1j5THoG5gLDRHCCmvkiN6cIy8jK-QHEgnIA_NJY0YwKPwtTABVeELXR9doOyVslrpG4RQmNE7BZYm2W1DZro5Zt9-98dZO3UWdtuaQefkUCKJFzK_UWnP1R7Bzt2NqrzZQOapbLlblA2-q9nBfLS9ezPgEdkc17 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswEB1kKdD20KSpgzorD7nkQJuiRFE6JoXdBHGMoHYA3wRxkWs0kItI7h_0vzuk5KZB0ENuokRKAofkPC7vDcAZY4obLhUNhU5oJFJD8yDmVMex1EVsc8WUDzYhx-NkNkvvWrK658JYa_3hM9tzl34v3yz1yi2V9dFVBegwxSZsiyjirKFr_d00iCIfjgsRQ0hFImfrXUmW9qeTO5wLctELhcRWK555IR9W5cVY7B3McOeVv7YLH1okSS4a03-EDVvuwft_9AU_we9vS7WqauJZtsbp-DcaHOSrk6kmTpgDE-PmJHhFEL-SyWLuMrT8AXwLWZTEHZF9wCR5Riep8H79nQzM3NLmhS23yT0kl0unjlxa_aMD98PB9MsVbeMuUM0jWdM4Z6ww2lgtcPqKQ0AcWOfKI4u-zCSsUIUOlbA8TXIZqsBgH9ZcqMDiaGCFDPdhq1yW9jMQlThBPwRZWA6hX55qVjDJiyhHWBGESRfO13bIfjbyGpmflrA0Q5tlzmZZa7MudFy9P-Vrq7wLR2vLZW0HrDLEiXHsxN7Cg_8UO4W3V9PbUTa6Ht8cwjv3pWZp5Qi26seVPYY3-le9qB5PfCv7A_WR0MI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Multidimensional+Graph+Neural+Networks+for+Signal+Processing+in+Wireless+Communications+With+Edge-Graph+Information+Bottleneck&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Liu%2C+Ziheng&rft.au=Zhang%2C+Jiayi&rft.au=Zhu%2C+Yiyang&rft.au=Shi%2C+Enyu&rft.date=2025&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=73&rft.spage=2688&rft.epage=2703&rft_id=info:doi/10.1109%2FTSP.2025.3574005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2025_3574005 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |