A Planar Array Synthesis Method Based on Deep Learning and Radiation Pattern Superposition Method

A dual-branched convolutional neural network (CNN) integrated with hybrid training criteria is proposed for real-time multibeam synthesis in planar uniform antenna arrays. For higher speed in dataset generation, the pattern superposition method is introduced in this article, which significantly impr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on antennas and propagation Ročník 73; číslo 8; s. 5265 - 5277
Hlavní autoři: Huang, Jianming, Liu, Rui, Zhang, Naibo, Cui, Yansong, Ren, Weizheng, Guo, Qiuquan, Du, Yanjun, Zhao, Jiayu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-926X, 1558-2221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A dual-branched convolutional neural network (CNN) integrated with hybrid training criteria is proposed for real-time multibeam synthesis in planar uniform antenna arrays. For higher speed in dataset generation, the pattern superposition method is introduced in this article, which significantly improves data generation speed (~0.7 ms per each). With a new hybrid training strategy integrating both "data-driven approximation" and "physics-informed approximation" criteria, flexible training while maintaining model synthesis efficiency is achieved simultaneously. Based on the approaches mentioned above, the proposed dual-branched CNN enables a dynamic multiobjective balance between its two branch outputs, accomplishing amplitude-phase synthesis for antenna array design. In the numerical simulation, consistent sidelobe suppression (<inline-formula> <tex-math notation="LaTeX">20\sim 40 </tex-math></inline-formula> dB) is demonstrated for dual-beam steering across <inline-formula> <tex-math notation="LaTeX">10^{\circ }{\sim }20^{\circ } </tex-math></inline-formula> off-axis angles, with high synthesis speeds (~0.05 s per each) on suitable computing platforms. In comparison experiments, the proposed method outperforms typical population-based stochastic optimization algorithms and deep neuron network (DNN) structure in both synthesis efficiency and pattern regularity. The model's real-time capability is verified for beam reconfiguration scenarios requiring subsecond responses, suggesting a new pathway for physics-embedded deep learning in antenna array synthesis.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2025.3564705