A Planar Array Synthesis Method Based on Deep Learning and Radiation Pattern Superposition Method

A dual-branched convolutional neural network (CNN) integrated with hybrid training criteria is proposed for real-time multibeam synthesis in planar uniform antenna arrays. For higher speed in dataset generation, the pattern superposition method is introduced in this article, which significantly impr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on antennas and propagation Ročník 73; číslo 8; s. 5265 - 5277
Hlavní autoři: Huang, Jianming, Liu, Rui, Zhang, Naibo, Cui, Yansong, Ren, Weizheng, Guo, Qiuquan, Du, Yanjun, Zhao, Jiayu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-926X, 1558-2221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A dual-branched convolutional neural network (CNN) integrated with hybrid training criteria is proposed for real-time multibeam synthesis in planar uniform antenna arrays. For higher speed in dataset generation, the pattern superposition method is introduced in this article, which significantly improves data generation speed (~0.7 ms per each). With a new hybrid training strategy integrating both "data-driven approximation" and "physics-informed approximation" criteria, flexible training while maintaining model synthesis efficiency is achieved simultaneously. Based on the approaches mentioned above, the proposed dual-branched CNN enables a dynamic multiobjective balance between its two branch outputs, accomplishing amplitude-phase synthesis for antenna array design. In the numerical simulation, consistent sidelobe suppression (<inline-formula> <tex-math notation="LaTeX">20\sim 40 </tex-math></inline-formula> dB) is demonstrated for dual-beam steering across <inline-formula> <tex-math notation="LaTeX">10^{\circ }{\sim }20^{\circ } </tex-math></inline-formula> off-axis angles, with high synthesis speeds (~0.05 s per each) on suitable computing platforms. In comparison experiments, the proposed method outperforms typical population-based stochastic optimization algorithms and deep neuron network (DNN) structure in both synthesis efficiency and pattern regularity. The model's real-time capability is verified for beam reconfiguration scenarios requiring subsecond responses, suggesting a new pathway for physics-embedded deep learning in antenna array synthesis.
AbstractList A dual-branched convolutional neural network (CNN) integrated with hybrid training criteria is proposed for real-time multibeam synthesis in planar uniform antenna arrays. For higher speed in dataset generation, the pattern superposition method is introduced in this article, which significantly improves data generation speed (~0.7 ms per each). With a new hybrid training strategy integrating both "data-driven approximation" and "physics-informed approximation" criteria, flexible training while maintaining model synthesis efficiency is achieved simultaneously. Based on the approaches mentioned above, the proposed dual-branched CNN enables a dynamic multiobjective balance between its two branch outputs, accomplishing amplitude-phase synthesis for antenna array design. In the numerical simulation, consistent sidelobe suppression (<inline-formula> <tex-math notation="LaTeX">20\sim 40 </tex-math></inline-formula> dB) is demonstrated for dual-beam steering across <inline-formula> <tex-math notation="LaTeX">10^{\circ }{\sim }20^{\circ } </tex-math></inline-formula> off-axis angles, with high synthesis speeds (~0.05 s per each) on suitable computing platforms. In comparison experiments, the proposed method outperforms typical population-based stochastic optimization algorithms and deep neuron network (DNN) structure in both synthesis efficiency and pattern regularity. The model's real-time capability is verified for beam reconfiguration scenarios requiring subsecond responses, suggesting a new pathway for physics-embedded deep learning in antenna array synthesis.
A dual-branched convolutional neural network (CNN) integrated with hybrid training criteria is proposed for real-time multibeam synthesis in planar uniform antenna arrays. For higher speed in dataset generation, the pattern superposition method is introduced in this article, which significantly improves data generation speed (~0.7 ms per each). With a new hybrid training strategy integrating both “data-driven approximation” and “physics-informed approximation” criteria, flexible training while maintaining model synthesis efficiency is achieved simultaneously. Based on the approaches mentioned above, the proposed dual-branched CNN enables a dynamic multiobjective balance between its two branch outputs, accomplishing amplitude-phase synthesis for antenna array design. In the numerical simulation, consistent sidelobe suppression ([Formula Omitted] dB) is demonstrated for dual-beam steering across [Formula Omitted] off-axis angles, with high synthesis speeds (~0.05 s per each) on suitable computing platforms. In comparison experiments, the proposed method outperforms typical population-based stochastic optimization algorithms and deep neuron network (DNN) structure in both synthesis efficiency and pattern regularity. The model’s real-time capability is verified for beam reconfiguration scenarios requiring subsecond responses, suggesting a new pathway for physics-embedded deep learning in antenna array synthesis.
Author Liu, Rui
Cui, Yansong
Zhao, Jiayu
Zhang, Naibo
Ren, Weizheng
Huang, Jianming
Guo, Qiuquan
Du, Yanjun
Author_xml – sequence: 1
  givenname: Jianming
  orcidid: 0009-0008-0392-1477
  surname: Huang
  fullname: Huang, Jianming
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 2
  givenname: Rui
  orcidid: 0009-0006-0771-1739
  surname: Liu
  fullname: Liu, Rui
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 3
  givenname: Naibo
  orcidid: 0000-0003-1017-1033
  surname: Zhang
  fullname: Zhang, Naibo
  email: zhangnaibai@163.com
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 4
  givenname: Yansong
  surname: Cui
  fullname: Cui, Yansong
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 5
  givenname: Weizheng
  orcidid: 0000-0002-3509-8488
  surname: Ren
  fullname: Ren, Weizheng
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 6
  givenname: Qiuquan
  surname: Guo
  fullname: Guo, Qiuquan
  organization: Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, China
– sequence: 7
  givenname: Yanjun
  orcidid: 0009-0008-2024-9133
  surname: Du
  fullname: Du, Yanjun
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 8
  givenname: Jiayu
  surname: Zhao
  fullname: Zhao, Jiayu
  email: ejmhuang@bupt.edu.cn
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China
BookMark eNpNkL1PwzAQxS1UJNrCzsBgiTnF307GUD6lIipaJDbLTi40VXGCnQ7970kJA9Pp7t57p_tN0Mg3HhC6pGRGKclu1vlyxgiTMy6V0ESeoDGVMk0YY3SExoTQNMmY-jhDkxi3fStSIcbI5ni5s94GnIdgD3h18N0GYh3xC3SbpsS3NkKJG4_vAFq8ABt87T-x9SV-s2Vtu7rfLW3XQfB4tW8htE2sf6dDwjk6rewuwsVfnaL3h_v1_ClZvD4-z_NFUjChu0RpXfR_EMWEs1a5wjFCeepcKW3pOFOFtlpLXhRO6lRVSlTCpbwkWcWBOuBTdD3ktqH53kPszLbZB9-fNJwJxSVhQvYqMqiK0MQYoDJtqL9sOBhKzBGk6UGaI0jzB7K3XA2WGgD-ybOUCa75D0EXcMc
CODEN IETPAK
Cites_doi 10.1109/LAWP.2013.2270930
10.1109/TAP.2023.3278878
10.1109/TAP.2021.3069467
10.1109/TKDE.2009.191
10.1109/TNNLS.2019.2927869
10.1109/APUSNCURSINRSM.2019.8888573
10.1109/TAP.2011.2173111
10.1109/compem.2018.8496657
10.1109/CVPR.2016.90
10.1038/nature14539
10.1016/0893-6080(91)90009-T
10.1109/JRPROC.1946.225956
10.1109/ACCESS.2023.3317371
10.1002/ett.4754
10.1109/MSP.2012.2205597
10.1002/mmce.22356
10.1109/TAI.2022.3192505
10.3311/PPee.22111
10.1002/mmce.23442
10.1109/csqrwc.2018.8454981
10.1109/TAP.2010.2048864
10.1109/TIE.2020.3001849
10.1145/3065386
10.1109/LWC.2018.2832128
10.1002/mop.10128
10.1109/TAP.2018.2871712
10.1109/TAP.2022.3140214
10.1109/LAWP.2017.2714182
10.1016/j.aeue.2012.03.012
10.1109/TAP.2007.910490
10.1109/JETCAS.2020.2972764
10.1049/ji-3-2.1948.0094
10.1016/j.aeue.2023.154788
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TAP.2025.3564705
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2221
EndPage 5277
ExternalDocumentID 10_1109_TAP_2025_3564705
10982437
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYXX
CITATION
7SP
8FD
AARMG
L7M
ID FETCH-LOGICAL-c247t-677c1090624baa6bcb20138bbd5adb326c7a7753ccb5786f64f4b83d09f3e1be3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001547923100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-926X
IngestDate Fri Sep 12 20:12:23 EDT 2025
Sat Nov 29 06:57:17 EST 2025
Sun Sep 28 03:48:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-677c1090624baa6bcb20138bbd5adb326c7a7753ccb5786f64f4b83d09f3e1be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-2024-9133
0009-0006-0771-1739
0009-0008-0392-1477
0000-0002-3509-8488
0000-0003-1017-1033
PQID 3246350245
PQPubID 85476
PageCount 13
ParticipantIDs proquest_journals_3246350245
ieee_primary_10982437
crossref_primary_10_1109_TAP_2025_3564705
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on antennas and propagation
PublicationTitleAbbrev TAP
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
Kingma (ref40) 2014
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Aljaf (ref24) 2023; 18
Simonyan (ref34) 2014
Bengio (ref36) 2017
ref23
ref26
ref25
ref20
ref22
ref21
Tompson (ref4); 27
Balanis (ref10) 2016
ref28
ref27
ref29
ref8
ref9
ref3
ref6
ref5
Tompson (ref7)
References_xml – ident: ref22
  doi: 10.1109/LAWP.2013.2270930
– ident: ref16
  doi: 10.1109/TAP.2023.3278878
– volume: 18
  start-page: 1199
  issue: 2
  year: 2023
  ident: ref24
  article-title: Multiple array patterns reconfiguration with common excitation amplitudes and optimized phases
  publication-title: J. Eng. Sci. Technol.
– ident: ref28
  doi: 10.1109/TAP.2021.3069467
– ident: ref39
  doi: 10.1109/TKDE.2009.191
– ident: ref2
  doi: 10.1109/TNNLS.2019.2927869
– ident: ref31
  doi: 10.1109/APUSNCURSINRSM.2019.8888573
– ident: ref17
  doi: 10.1109/TAP.2011.2173111
– ident: ref8
  doi: 10.1109/compem.2018.8496657
– ident: ref38
  doi: 10.1109/CVPR.2016.90
– year: 2014
  ident: ref40
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref6
  doi: 10.1038/nature14539
– ident: ref35
  doi: 10.1016/0893-6080(91)90009-T
– ident: ref11
  doi: 10.1109/JRPROC.1946.225956
– ident: ref27
  doi: 10.1109/ACCESS.2023.3317371
– ident: ref14
  doi: 10.1002/ett.4754
– ident: ref5
  doi: 10.1109/MSP.2012.2205597
– volume-title: Antenna Theory: Analysis and Design
  year: 2016
  ident: ref10
– ident: ref25
  doi: 10.1002/mmce.22356
– volume: 27
  start-page: 1799
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref4
  article-title: Joint training of a convolutional network and a graphical model for human pose estimation
– ident: ref30
  doi: 10.1109/TAI.2022.3192505
– ident: ref23
  doi: 10.3311/PPee.22111
– year: 2014
  ident: ref34
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref13
  doi: 10.1002/mmce.23442
– ident: ref32
  doi: 10.1109/csqrwc.2018.8454981
– ident: ref21
  doi: 10.1109/TAP.2010.2048864
– ident: ref3
  doi: 10.1109/TIE.2020.3001849
– ident: ref1
  doi: 10.1145/3065386
– ident: ref9
  doi: 10.1109/LWC.2018.2832128
– ident: ref18
  doi: 10.1002/mop.10128
– ident: ref37
  doi: 10.1109/TAP.2018.2871712
– ident: ref29
  doi: 10.1109/TAP.2022.3140214
– volume-title: Deep Learning
  year: 2017
  ident: ref36
– ident: ref20
  doi: 10.1109/LAWP.2017.2714182
– ident: ref26
  doi: 10.1016/j.aeue.2012.03.012
– ident: ref19
  doi: 10.1109/TAP.2007.910490
– ident: ref33
  doi: 10.1109/JETCAS.2020.2972764
– ident: ref12
  doi: 10.1049/ji-3-2.1948.0094
– start-page: 3424
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref7
  article-title: Accelerating Eulerian fluid simulation with convolutional networks
– ident: ref15
  doi: 10.1016/j.aeue.2023.154788
SSID ssj0014844
Score 2.4754748
Snippet A dual-branched convolutional neural network (CNN) integrated with hybrid training criteria is proposed for real-time multibeam synthesis in planar uniform...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 5265
SubjectTerms Antenna arrays
Antenna design
Antenna radiation patterns
Antennas
Approximation
Arrays
Artificial neural networks
Beam steering
Beamforming
convolutional networks
Convolutional neural networks
Criteria
Deep learning
Machine learning
Neural networks
Optimization
Planar arrays
Real time
Real-time systems
Reconfiguration
Sidelobe reduction
Sidelobes
Stochastic processes
Synthesis
Training
Title A Planar Array Synthesis Method Based on Deep Learning and Radiation Pattern Superposition Method
URI https://ieeexplore.ieee.org/document/10982437
https://www.proquest.com/docview/3246350245
Volume 73
WOSCitedRecordID wos001547923100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2221
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014844
  issn: 0018-926X
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RigEGPosoFOSBhSEldRzbGctHxUJV0SJ1i2zHQV3SqmmR-u_xOSmqhBjYMjhW5JfL3eXu3gO4M6HhVGoTYI0sYMbQQDlHHeRWKpvHsUpC5cUmxHAop9NkVA-r-1kYa61vPrNdvPS1_Gxu1virzFl4IpFArwENIXg1rPVTMmCSVZTLPWfBlE-3NckweZj0Ry4TpHE3ijkTqFS344O8qMqvL7F3L4Pjfz7YCRzVcSTpV8Cfwp4tzuBwh13wHFSfoCSRWrpVS7Uh403hor1yVpI3LxtNHp0Hy8i8IM_WLkjNtPpJVJGRd6QsQMzIyBNwFmS8XqAgV9XiVe_Qgo_By-TpNagVFQJDmVgFXAiDnZicMq0U10ZTrFRqncUq0y6SM0IJl8AYo50l85yznGkZZWGSR7anbXQBzWJe2EsgGRLhKasiHkbM9mJpjYtMnCPUQjJJVRvut2ecLirijNQnHGGSOjxSxCOt8WhDC890Z111nG3obFFJa9MqUxcBuiAJK8ZXf9x2DQe4e9Wm14Hmarm2N7Bvvlazcnnr35pvPfa_yw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4omqgHnxhR1D148VAs7Xa7PeKDYARCBBNuze52a7gUQsGEf-_OthgS48FbD9tHdjqdbzoz3wdwp1zFPC6VgzUyhyrlOcIEaifVXOg0CETkCis2Efb7fDyOBuWwup2F0Vrb5jPdwENby0-maom_yoyHRxwJ9LZhB6WzynGtn6IB5bQgXW4aH_bYeF2VdKOHUWtgckEvaPgBoyFq1W1EISur8utbbANM--ifj3YMhyWSJK3C9CewpbNTONjgFzwD0SIoSiTmZtVcrMhwlRm8l09y0rPC0eTRxLCETDPyrPWMlFyrn0RkCXlH0gK0GhlYCs6MDJczlOQqmrzKK1Tho_0yeuo4paaCozwaLhwWhgp7MZlHpRBMKulhrVLKJBCJNFhOhSI0KYxS0vgySxlNqeR-4kapr5tS--dQyaaZvgCSIBWe0MJnrk91M-BaGWxiQqEMOeWeqMH9eo_jWUGdEduUw41iY48Y7RGX9qhBFfd0Y12xnTWor60Sl86VxwYDGpiENePLP067hb3OqNeNu6_9tyvYxzsVTXt1qCzmS30Nu-prMcnnN_YN-gZpWcMU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Planar+Array+Synthesis+Method+Based+on+Deep+Learning+and+Radiation+Pattern+Superposition+Method&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Huang%2C+Jianming&rft.au=Liu%2C+Rui&rft.au=Zhang%2C+Naibo&rft.au=Cui%2C+Yansong&rft.date=2025-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-926X&rft.eissn=1558-2221&rft.volume=73&rft.issue=9&rft.spage=5265&rft.epage=5277&rft_id=info:doi/10.1109%2FTAP.2025.3564705&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon