Automatically Inverse Design of FSSs by Conditional Variational Autoencoder and Equivalent Circuit Models With Large Language Models

Recently, deep learning has attracted intensive attentions in electromagnetic society, especially for inverse problems. In this work, we propose two language-guided automatic design frameworks for frequency selective surfaces (FSSs), where both of them are assisted by large language models (LLMs). O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation Jg. 73; H. 11; S. 8922 - 8932
Hauptverfasser: Shen, Jiajun, Liu, Jianfa, Qu, Changhao, Wang, Bao, Wang, Qian, Wei, Zhun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.11.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-926X, 1558-2221
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recently, deep learning has attracted intensive attentions in electromagnetic society, especially for inverse problems. In this work, we propose two language-guided automatic design frameworks for frequency selective surfaces (FSSs), where both of them are assisted by large language models (LLMs). On the one hand, the LLM is used to extract key desired features from language, which is then followed with a conditional variational autoencoder (CVAE) to generate S-parameters from the extracted features. With the generative S-parameters, an inverse surrogate model is designed to predict the geometry sizes of FSSs followed by LLM to output designed specifications in language. On the other hand, an inverse-design framework is further introduced to build the mapping from equivalent-circuit model to geometry sizes of FSS, where the loss is further constrained by a forward surrogate to alleviate nonunique problems in inverse design. The proposed framework is validated by designing numerous FSSs including high-pass, low-pass, bandpass, and band-stop types, where a representative structure is further fabricated and tested to verify the proposed methods.
AbstractList Recently, deep learning has attracted intensive attentions in electromagnetic society, especially for inverse problems. In this work, we propose two language-guided automatic design frameworks for frequency selective surfaces (FSSs), where both of them are assisted by large language models (LLMs). On the one hand, the LLM is used to extract key desired features from language, which is then followed with a conditional variational autoencoder (CVAE) to generate S-parameters from the extracted features. With the generative S-parameters, an inverse surrogate model is designed to predict the geometry sizes of FSSs followed by LLM to output designed specifications in language. On the other hand, an inverse-design framework is further introduced to build the mapping from equivalent-circuit model to geometry sizes of FSS, where the loss is further constrained by a forward surrogate to alleviate nonunique problems in inverse design. The proposed framework is validated by designing numerous FSSs including high-pass, low-pass, bandpass, and band-stop types, where a representative structure is further fabricated and tested to verify the proposed methods.
Author Liu, Jianfa
Wang, Qian
Shen, Jiajun
Qu, Changhao
Wang, Bao
Wei, Zhun
Author_xml – sequence: 1
  givenname: Jiajun
  surname: Shen
  fullname: Shen, Jiajun
  organization: Zhejiang Key Laboratory of Intelligent Electromagnetic Control and Advanced Electronic Integration, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Jianfa
  orcidid: 0009-0003-3955-3518
  surname: Liu
  fullname: Liu, Jianfa
  organization: Zhejiang Key Laboratory of Intelligent Electromagnetic Control and Advanced Electronic Integration, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Changhao
  surname: Qu
  fullname: Qu, Changhao
  organization: Zhejiang Key Laboratory of Intelligent Electromagnetic Control and Advanced Electronic Integration, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Bao
  orcidid: 0000-0002-4103-8393
  surname: Wang
  fullname: Wang, Bao
  organization: Aeronautical Science Key Laboratory for High Performance Electromagnetic Windows, AVIC Research Institute for Special Structures of Aeronautical Composites, Jinan, China
– sequence: 5
  givenname: Qian
  orcidid: 0000-0001-9132-5086
  surname: Wang
  fullname: Wang, Qian
  organization: Aeronautical Science Key Laboratory for High Performance Electromagnetic Windows, AVIC Research Institute for Special Structures of Aeronautical Composites, Jinan, China
– sequence: 6
  givenname: Zhun
  orcidid: 0000-0002-8699-3749
  surname: Wei
  fullname: Wei, Zhun
  email: eleweiz@zju.edu.cn
  organization: Zhejiang Key Laboratory of Intelligent Electromagnetic Control and Advanced Electronic Integration, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
BookMark eNpFkM1LAzEQxYMo2Kp3Dx4Cnrcm2WQ3eyy1VaGiYFFvS5qd1JQ1aZNdoXf_cFNa8DIfvPcG5jdEp847QOiakhGlpLpbjF9HjDAxykVVlFVxggZUCJkxxugpGhBCZVax4vMcDWNcp5VLzgfod9x3_lt1Vqu23eEn9wMhAr6HaFcOe4Nnb28RL3d44l1jO-udavG7ClYd530enPYNBKxcg6fb3v6oFlyHJzbo3nb4OYltxB-2-8JzFVaQqlv1Kg0H6RKdGdVGuDr2C7SYTReTx2z-8vA0Gc8zzXjZZcIw4MCN0KKSjVEgdcNybZLIWcObpYCcSE2YTj4pWGOAsryQVJWqNDq_QLeHs5vgtz3Erl77PqQnYp2zouSSlqRMLnJw6eBjDGDqTbDfKuxqSuo96jqhrveo6yPqFLk5RCwA_NspZZwzkf8B49F-SQ
CODEN IETPAK
Cites_doi 10.1109/TAP.2014.2361892
10.1109/TAP.2022.3195553
10.1109/JAS.2023.123618
10.1109/TAP.2005.844439
10.1109/ICCEM60619.2024.10558879
10.1109/TMAG.2013.2282532
10.1109/ISAP57493.2023.10388653
10.1109/TEMC.2023.3256388
10.1109/ACCESS.2021.3086777
10.1109/TAP.2022.3184545
10.1109/TAP.2016.2565694
10.1109/LAWP.2024.3399262
10.23919/ACES-China52398.2021.9581800
10.1109/TAP.2004.835289
10.1002/0471723770
10.1109/TEMC.2023.3312114
10.1109/LAWP.2024.3456838
10.1109/LAWP.2024.3362745
10.1007/s11633-023-1469-x
10.1109/CSRSWTC60855.2023.10426963
10.1109/tmtt.2024.3479872
10.1109/LAWP.2019.2944936
10.1109/TMAG.2015.2474816
10.1109/LAWP.2017.2743114
10.1109/TAP.2024.3366650
10.1109/TAP.2014.2357427
10.1109/TAP.2005.844438
10.1109/TAP.2019.2924909
10.1109/LAD62341.2024.10691722
10.1109/TEMC.2024.3427415
10.1109/TAP.2020.3027514
10.1109/RSEMW58451.2023.10202036
10.1109/TMTT.2023.3235066
10.1109/TAP.2021.3060142
10.1109/LAWP.2024.3372529
10.1109/ICMMT45702.2019.8992280
10.1109/TAP.2021.3096207
10.1109/TEMC.2023.3239747
10.1109/TAP.2015.2513423
10.1109/ACCESS.2023.3300381
10.1109/BigData59044.2023.10386911
10.1109/TAP.2023.3339217
10.1109/LAWP.2024.3477934
10.1109/LAWP.2023.3276998
10.1016/j.iotcps.2023.04.003
10.1109/LAWP.2006.875900
10.1109/TAP.2024.3456902
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TAP.2025.3596796
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2221
EndPage 8932
ExternalDocumentID 10_1109_TAP_2025_3596796
11124425
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2022ZD0117802
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c247t-5f2e4e4f5c598dfae8cd23cf24742d4db5e308c02c2e4852dfe123681a7a7fc3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001606666800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-926X
IngestDate Sat Nov 01 15:13:58 EDT 2025
Sat Nov 29 06:55:58 EST 2025
Wed Nov 19 08:27:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-5f2e4e4f5c598dfae8cd23cf24742d4db5e308c02c2e4852dfe123681a7a7fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9132-5086
0009-0003-3955-3518
0000-0002-8699-3749
0000-0002-4103-8393
PQID 3267481707
PQPubID 85476
PageCount 11
ParticipantIDs ieee_primary_11124425
crossref_primary_10_1109_TAP_2025_3596796
proquest_journals_3267481707
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on antennas and propagation
PublicationTitleAbbrev TAP
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref50
Brown (ref44) 2020
ref46
ref45
ref42
ref41
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Touvron (ref47) 2023
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
Lalbakhsh (ref26)
ref39
ref38
Grattafiori (ref48) 2024
ref24
ref23
ref25
ref20
Hu (ref51) 2021
ref22
ref21
ref28
ref27
ref29
(ref49) 2024
References_xml – ident: ref11
  doi: 10.1109/TAP.2014.2361892
– ident: ref42
  doi: 10.1109/TAP.2022.3195553
– ident: ref39
  doi: 10.1109/JAS.2023.123618
– ident: ref23
  doi: 10.1109/TAP.2005.844439
– ident: ref2
  doi: 10.1109/ICCEM60619.2024.10558879
– ident: ref12
  doi: 10.1109/TMAG.2013.2282532
– ident: ref4
  doi: 10.1109/ISAP57493.2023.10388653
– ident: ref31
  doi: 10.1109/TEMC.2023.3256388
– ident: ref27
  doi: 10.1109/ACCESS.2021.3086777
– ident: ref36
  doi: 10.1109/TAP.2022.3184545
– ident: ref53
  doi: 10.1109/TAP.2016.2565694
– ident: ref7
  doi: 10.1109/LAWP.2024.3399262
– ident: ref15
  doi: 10.23919/ACES-China52398.2021.9581800
– ident: ref24
  doi: 10.1109/TAP.2004.835289
– ident: ref1
  doi: 10.1002/0471723770
– ident: ref21
  doi: 10.1109/TEMC.2023.3312114
– ident: ref34
  doi: 10.1109/LAWP.2024.3456838
– ident: ref8
  doi: 10.1109/LAWP.2024.3362745
– year: 2023
  ident: ref47
  article-title: Llama 2: Open foundation and fine-tuned chat models
  publication-title: arXiv:2307.09288
– ident: ref46
  doi: 10.1007/s11633-023-1469-x
– year: 2021
  ident: ref51
  article-title: LoRA: Low-rank adaptation of large language models
  publication-title: arXiv:2106.09685
– ident: ref14
  doi: 10.1109/CSRSWTC60855.2023.10426963
– ident: ref41
  doi: 10.1109/tmtt.2024.3479872
– ident: ref5
  doi: 10.1109/LAWP.2019.2944936
– ident: ref13
  doi: 10.1109/TMAG.2015.2474816
– start-page: 1
  volume-title: Proc. Int. Symp. Antennas Propag. (ISAP)
  ident: ref26
  article-title: Multi-objective particle swarm optimization for the realization of a low profile bandpass frequency selective surface
– ident: ref20
  doi: 10.1109/LAWP.2017.2743114
– ident: ref22
  doi: 10.1109/TAP.2024.3366650
– ident: ref10
  doi: 10.1109/TAP.2014.2357427
– year: 2020
  ident: ref44
  article-title: Language models are few-shot learners
  publication-title: arXiv:2005.14165
– ident: ref19
  doi: 10.1109/TAP.2005.844438
– ident: ref3
  doi: 10.1109/TAP.2019.2924909
– ident: ref40
  doi: 10.1109/LAD62341.2024.10691722
– ident: ref32
  doi: 10.1109/TEMC.2024.3427415
– ident: ref18
  doi: 10.1109/TAP.2020.3027514
– ident: ref17
  doi: 10.1109/RSEMW58451.2023.10202036
– ident: ref28
  doi: 10.1109/TMTT.2023.3235066
– ident: ref43
  doi: 10.1109/TAP.2021.3060142
– volume-title: Independent Analysis of AI Models and API Providers
  year: 2024
  ident: ref49
– ident: ref9
  doi: 10.1109/LAWP.2024.3372529
– ident: ref16
  doi: 10.1109/ICMMT45702.2019.8992280
– ident: ref33
  doi: 10.1109/TAP.2021.3096207
– ident: ref29
  doi: 10.1109/TEMC.2023.3239747
– ident: ref52
  doi: 10.1109/TAP.2015.2513423
– ident: ref38
  doi: 10.1109/ACCESS.2023.3300381
– ident: ref50
  doi: 10.1109/BigData59044.2023.10386911
– ident: ref30
  doi: 10.1109/TAP.2023.3339217
– ident: ref6
  doi: 10.1109/LAWP.2024.3477934
– ident: ref35
  doi: 10.1109/LAWP.2023.3276998
– ident: ref45
  doi: 10.1016/j.iotcps.2023.04.003
– ident: ref25
  doi: 10.1109/LAWP.2006.875900
– year: 2024
  ident: ref48
  article-title: The llama 3 herd of models
  publication-title: arXiv:2407.21783
– ident: ref37
  doi: 10.1109/TAP.2024.3456902
SSID ssj0014844
Score 2.4827435
Snippet Recently, deep learning has attracted intensive attentions in electromagnetic society, especially for inverse problems. In this work, we propose two...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 8922
SubjectTerms Autoencoders
Band-pass filters
Bandwidth
Conditional variational autoencoder (CVAE)
Data mining
Design
Equivalent circuits
Feature extraction
frequency selective surface (FSS)
Frequency selective surfaces
Inverse design
Inverse problems
Language
large language model (LLM)
Large language models
Load modeling
Machine learning
Parameters
Scattering parameters
Silicon
Training
Title Automatically Inverse Design of FSSs by Conditional Variational Autoencoder and Equivalent Circuit Models With Large Language Models
URI https://ieeexplore.ieee.org/document/11124425
https://www.proquest.com/docview/3267481707
Volume 73
WOSCitedRecordID wos001606666800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2221
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014844
  issn: 0018-926X
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEA4qHtyD78XxRQ5ePLR2p5NJchxGBw8igoPOrUnnwTYM07v9ELz7w62ke3wge_DSBJI0IVWV1CP1FUJnqcw1S3IZDbXQEU14HoGWoKLcJCLWTikpXSg2we_uxGwm7_tk9ZALY60Nj8_shW-GWL4pdetdZZcgl3AbEbaKVjnnXbLWe8iACtpBLicgwWQ4W8YkY3k5Hd2DJUjYRcqk95t8uYNCUZVvJ3G4XiZbP1zYNtrs9Ug86gi_g1bsYhf9-oQuuIdeR21TBkRWNZ-_YI-oUdUWX4U3G7h0ePLwUOP8BY9LH7cOPkH8CLZz7x_Efr7HuTS2wmph8PW_tgDGhKXgcVHptmiwL6U2r_FT0fzBt_5ROXw7B2jftY-mk-vp-Cbqiy5EmlDeRMwRSy11TDMpjFNWaENS7aCTEkNNzmwaCx0TDeMEI8ZZD-AiEsUVdzr9jdYW5cIeIOwHcstBYwOTDw4KGStFHbBESq2QQzJA50sqZH87aI0smCSxzIBimadY1lNsgPb9rn-M6zd8gI6XdMt64asz0Eg59cCD_PA_047Qhv97l1N4jNaaqrUnaF0_N0VdnQa-egNtWsz3
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQaIceBaxUMAHLhzSJo69to-rpasillWlrmBvkeOHGmm1oXkg9c4PZ-xkeQhx4JJE8lixPB57Hp5vAN7mqjQ8K1UyNdIkLBNlglqCTkqbydR4rZXysdiEWK3kZqMuxmT1mAvjnIuXz9xJ-IyxfFubPrjKTlEu8TSi_Dbc4fjOhnStn0EDJtkAupyhDNPpZh-VTNXpenaBtiDlJzlXwXPyxykUy6r8tRfHA2bx8D-H9ggejJokmQ2sfwy33O4J3P8NX_ApfJ_1XR0xWfV2e0MCpkbTOvI-3togtSeLy8uWlDdkXofIdfQKks9oPY8eQhL6B6RL6xqid5acXfcVLk0cCplXjemrjoRiatuWfKm6K7IM18rxObhAx6YjWC_O1vPzZCy7kBjKRJdwTx1zzHPDlbReO2kszY3HRkYtsyV3eSpNSg3SSU6tdwHCRWZaaOFN_gwOdvXOPQcSCIUTqLOh0YdbhUq1Zh4XRc6cVFM6gXd7LhRfB3CNIholqSqQY0XgWDFybAJHYdZ_0Y0TPoHjPd-KUfzaAnVSwQL0oHjxj25v4N75-tOyWH5YfXwJh-FPQ4bhMRx0Te9ewV3zrava5nVcYz8APunQPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatically+Inverse+Design+of+FSSs+by+Conditional+Variational+Autoencoder+and+Equivalent+Circuit+Models+With+Large+Language+Models&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Shen%2C+Jiajun&rft.au=Liu%2C+Jianfa&rft.au=Qu%2C+Changhao&rft.au=Wang%2C+Bao&rft.date=2025-11-01&rft.pub=IEEE&rft.issn=0018-926X&rft.volume=73&rft.issue=11&rft.spage=8922&rft.epage=8932&rft_id=info:doi/10.1109%2FTAP.2025.3596796&rft.externalDocID=11124425
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon