Convolutional Analysis Sparse Coding for Multimodal Image Super-Resolution

With multimodal imaging systems in place, recent research focus has been directed toward exploiting the knowledge from different imaging modalities to solve inverse problems, one example being image super-resolution, considered in this letter. The goal of multimodal image super-resolution (MISR) is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors letters Jg. 8; H. 6; S. 1 - 4
Hauptverfasser: Kumar, Kriti, Majumdar, Angshul, Kumar, A. Anil, Chandra, M. Girish
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2475-1472, 2475-1472
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With multimodal imaging systems in place, recent research focus has been directed toward exploiting the knowledge from different imaging modalities to solve inverse problems, one example being image super-resolution, considered in this letter. The goal of multimodal image super-resolution (MISR) is to enhance the resolution of low-resolution (LR) images from the target modality by taking guidance from high-resolution (HR) images from a different modality. Conventional methods for MISR employing convolutional neural networks typically adopt an encoder-decoder architecture that often demands massive data for optimal reconstruction and tends to overfit in data-limited scenarios. The proposed work presents a convolutional analysis sparse coding-based method, employing convolutional transforms that eliminate the need for learning the decoder network and learns unique filters. This reduces the number of trainable parameters, making it suitable for learning with limited data. A joint optimization formulation is presented that learns dedicated convolutional transforms for both the LR images of target modality and the HR images of guidance modality, and a fusing (combining) transform that combines the respective transform features to reconstruct the HR images of target modality. Unlike the dictionary-based synthesis sparse coding methods for MISR, the proposed approach offers enhanced performance with reduced complexity due to some of the inherent advantages of transform learning. The effectiveness of the proposed method is validated using RGB-Near Infrared and RGB-Multispectral datasets. Experimental findings demonstrate enhanced reconstruction performance achieved by the proposed method, compared with the state-of-the-art techniques. Moreover, the proposed method demonstrates improved robustness to noise compared with other sparse coding-based methods.
AbstractList With multimodal imaging systems in place, recent research focus has been directed toward exploiting the knowledge from different imaging modalities to solve inverse problems, one example being image super-resolution, considered in this letter. The goal of multimodal image super-resolution (MISR) is to enhance the resolution of low-resolution (LR) images from the target modality by taking guidance from high-resolution (HR) images from a different modality. Conventional methods for MISR employing convolutional neural networks typically adopt an encoder–decoder architecture that often demands massive data for optimal reconstruction and tends to overfit in data-limited scenarios. The proposed work presents a convolutional analysis sparse coding-based method, employing convolutional transforms that eliminate the need for learning the decoder network and learns unique filters. This reduces the number of trainable parameters, making it suitable for learning with limited data. A joint optimization formulation is presented that learns dedicated convolutional transforms for both the LR images of target modality and the HR images of guidance modality, and a fusing (combining) transform that combines the respective transform features to reconstruct the HR images of target modality. Unlike the dictionary-based synthesis sparse coding methods for MISR, the proposed approach offers enhanced performance with reduced complexity due to some of the inherent advantages of transform learning. The effectiveness of the proposed method is validated using RGB-Near Infrared and RGB-Multispectral datasets. Experimental findings demonstrate enhanced reconstruction performance achieved by the proposed method, compared with the state-of-the-art techniques. Moreover, the proposed method demonstrates improved robustness to noise compared with other sparse coding-based methods.
Author Kumar, A. Anil
Majumdar, Angshul
Kumar, Kriti
Chandra, M. Girish
Author_xml – sequence: 1
  givenname: Kriti
  orcidid: 0000-0003-0484-7404
  surname: Kumar
  fullname: Kumar, Kriti
  email: kriti.kumar@tcs.com
  organization: TCS Research, Bangalore, India
– sequence: 2
  givenname: Angshul
  orcidid: 0000-0002-1065-3000
  surname: Majumdar
  fullname: Majumdar, Angshul
  organization: Indraprastha Institute of Information Technology Delhi, New Delhi, India
– sequence: 3
  givenname: A. Anil
  orcidid: 0000-0002-0661-5976
  surname: Kumar
  fullname: Kumar, A. Anil
  organization: TCS Research, Bangalore, India
– sequence: 4
  givenname: M. Girish
  orcidid: 0000-0002-1479-0504
  surname: Chandra
  fullname: Chandra, M. Girish
  organization: TCS Research, Bangalore, India
BookMark eNpNkE1Lw0AQhhdRsNb-AfEQ8Jy6n93NsYSqlapg9LzsJrMlJc3G3Ubovze1PfQyM4f3GV6eG3TZ-hYQuiN4SgjOHlfF4r2YUkz5lHHMiMwu0IhyKVLCJb08u6_RJMYNxpgoKjHDI_Sa-_bXN_2u9q1pkvkw9rGOSdGZECHJfVW368T5kLz1za7e-mpILbdmDUnRdxDST4gn_BZdOdNEmJz2GH0_Lb7yl3T18bzM56u0HHrsUgGZkdJwILJSmXWKCqqMdCCUlY474Yh0lhNLrGIlLikFY7OsAmwZlzPLxujh-LcL_qeHuNMb34eheNQMz7gkQnExpOgxVQYfYwCnu1BvTdhrgvVBm_7Xpg_a9EnbAN0foRoAzgDBBMkU-wOl5Gtb
CODEN ISLECD
Cites_doi 10.1109/TCI.2018.2840334
10.1287/moor.2022.1256
10.1109/JSTSP.2015.2417131
10.1109/TPAMI.2012.213
10.23919/EUSIPCO55093.2022.9909616
10.1109/TSP.2012.2226449
10.23919/Eusipco47968.2020.9287506
10.1109/TIP.2019.2944270
10.1007/978-3-030-04182-3_15
10.1109/JAS.2023.123681
10.1109/TIP.2022.3141251
10.1109/JPROC.2015.2449668
10.1109/TCI.2019.2916502
10.1109/CVPR.2011.5995660
10.1109/JSEN.2022.3229046
10.1109/TPAMI.2018.2890623
10.1109/JSEN.2022.3195243
10.1109/ICASSP39728.2021.9413490
10.1109/CVPR.2011.5995637
10.1109/TPAMI.2015.2417569
10.1109/LSP.2022.3159149
10.1145/1276377.1276497
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LSENS.2024.3403179
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2475-1472
EndPage 4
ExternalDocumentID 10_1109_LSENS_2024_3403179
10535198
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c247t-5e9a77a4e17d89bf82528a7fe58b7f4f5f17fb41b1b83c0c22eab99de0b3476b3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001239997500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2475-1472
IngestDate Mon Jun 30 04:34:53 EDT 2025
Sat Nov 29 05:53:53 EST 2025
Wed Aug 27 01:58:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-5e9a77a4e17d89bf82528a7fe58b7f4f5f17fb41b1b83c0c22eab99de0b3476b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1065-3000
0000-0002-0661-5976
0000-0002-1479-0504
0000-0003-0484-7404
PQID 3064715845
PQPubID 4437223
PageCount 4
ParticipantIDs ieee_primary_10535198
proquest_journals_3064715845
crossref_primary_10_1109_LSENS_2024_3403179
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE sensors letters
PublicationTitleAbbrev LSENS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Kingma (ref21) 2015
ref12
ref23
ref15
ref14
ref20
ref11
ref22
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref15
  doi: 10.1109/TCI.2018.2840334
– ident: ref19
  doi: 10.1287/moor.2022.1256
– ident: ref16
  doi: 10.1109/JSTSP.2015.2417131
– ident: ref3
  doi: 10.1109/TPAMI.2012.213
– ident: ref11
  doi: 10.23919/EUSIPCO55093.2022.9909616
– ident: ref20
  doi: 10.1109/TSP.2012.2226449
– ident: ref17
  doi: 10.23919/Eusipco47968.2020.9287506
– ident: ref13
  doi: 10.1109/TIP.2019.2944270
– ident: ref18
  doi: 10.1007/978-3-030-04182-3_15
– ident: ref6
  doi: 10.1109/JAS.2023.123681
– ident: ref12
  doi: 10.1109/TIP.2022.3141251
– ident: ref2
  doi: 10.1109/JPROC.2015.2449668
– ident: ref9
  doi: 10.1109/TCI.2019.2916502
– ident: ref22
  doi: 10.1109/CVPR.2011.5995660
– ident: ref1
  doi: 10.1109/JSEN.2022.3229046
– ident: ref7
  doi: 10.1109/TPAMI.2018.2890623
– ident: ref8
  doi: 10.1109/JSEN.2022.3195243
– ident: ref10
  doi: 10.1109/ICASSP39728.2021.9413490
– ident: ref23
  doi: 10.1109/CVPR.2011.5995637
– ident: ref5
  doi: 10.1109/TPAMI.2015.2417569
– ident: ref14
  doi: 10.1109/LSP.2022.3159149
– ident: ref4
  doi: 10.1145/1276377.1276497
– volume-title: Proc. 3rd Int. Conf. Learn. Representations
  year: 2015
  ident: ref21
  article-title: Adam: A method for stochastic optimization
SSID ssj0001827030
Score 2.2573922
Snippet With multimodal imaging systems in place, recent research focus has been directed toward exploiting the knowledge from different imaging modalities to solve...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Benchmark testing
Convolutional codes
convolutional sparse coding
convolutional transform learning (CTL)
Image coding
Image enhancement
Image reconstruction
Image resolution
Inverse problems
joint optimization
Learning
multimodal image super-resolution (MISR)
Performance enhancement
Sensor applications
Superresolution
Task analysis
Transforms
Title Convolutional Analysis Sparse Coding for Multimodal Image Super-Resolution
URI https://ieeexplore.ieee.org/document/10535198
https://www.proquest.com/docview/3064715845
Volume 8
WOSCitedRecordID wos001239997500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2475-1472
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001827030
  issn: 2475-1472
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5s8eDFB1asVtmDN9m6j-xOcpTSoiJFWIXeliQ7AQ_tlr5-v0l2i4J48LawybJ8mczMN5nJANxJSxJkRVFIHKuQobF6UEoe8orSTKdZZFLjm03gdMpnM_HWFqv7Whgi8slnNHSP_iy_qvXWhcrsDs9cPznegQ5i3hRrfQdUeOKkd18YE4mH12I8LSwFTNgwZVZ4XbrWD-Pju6n8UsHerkxO_vlHp3DcOpDBY7PiZ3BAi3N4GdWLXStE7mV700hQLC1vpWBUOwsVWP808AW387qyo57nVpcExXZJq9BF8ZvpPfiYjN9HT2HbJSHUCcNNmJGQiJJRjBUXyljKl3CJhjKu0DCTmRiNYrGKFU91pJOEpBLCro9KGeYqvYDuol7QJQSCC9LWQ1EorAK1xJmRljlVPEeFPNJ9uN_DVy6byzBKTyIiUXqwSwd22YLdh54D7MfIBqs-DPaQl-2GWZeOCGFsvaHs6o9p13Dkvt6kaQ2gu1lt6QYO9W7zuV7deln4AnW5tE8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBb34wIrVqnvwJlv3kTTJUYql1boIW6G3kGQn4KHd0tfvN8lusSAevC1swi5fJjPzTWYyCD1ISxJkAVEIjBYhpsbqQSlZyApIiU5JZFLjm03QLGOTCf-oi9V9LQwA-OQz6LhHf5ZflHrtQmV2hxPXT47towOCcRJV5Vo_IRWWOPndlsZE_GmUv2S5JYEJ7qTYiq9L2NoxP76fyi8l7C1L__Sf_3SGTmoXMniu1vwc7cHsAr32ytmmFiP3sr5rJMjnlrlC0CudjQqshxr4kttpWdhRw6nVJkG-nsMidHH8anoTffZfxr1BWPdJCHWC6SokwCWlEkNMC8aVsaQvYZIaIExRgw0xMTUKxypWLNWRThKQinO7QirFtKvSS9SYlTO4QgFnHLT1URTlVoVa6oxByy4UrEsVZZFuocctfGJeXYchPI2IuPBgCwe2qMFuoaYDbGdkhVULtbeQi3rLLIWjQjS2_hC5_mPaPToajN9HYjTM3m7QsftSlbTVRo3VYg236FBvVl_LxZ2Xi28DvbeW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Analysis+Sparse+Coding+for+Multimodal+Image+Super-Resolution&rft.jtitle=IEEE+sensors+letters&rft.au=Kumar%2C+Kriti&rft.au=Majumdar%2C+Angshul&rft.au=Kumar%2C+A.+Anil&rft.au=Chandra%2C+M.+Girish&rft.date=2024-06-01&rft.issn=2475-1472&rft.eissn=2475-1472&rft.volume=8&rft.issue=6&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FLSENS.2024.3403179&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSENS_2024_3403179
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1472&client=summon