New Bounds on the Size of Binary Codes With Large Minimum Distance

Let <inline-formula> <tex-math notation="LaTeX">A(n, d) </tex-math></inline-formula> denote the maximum size of a binary code of length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> and minimum Hamming d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in information theory Jg. 4; S. 219 - 231
Hauptverfasser: Pang, James Chin-Jen, Mahdavifar, Hessam, Pradhan, S. Sandeep
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2641-8770, 2641-8770
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Let <inline-formula> <tex-math notation="LaTeX">A(n, d) </tex-math></inline-formula> denote the maximum size of a binary code of length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> and minimum Hamming distance <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula>. Studying <inline-formula> <tex-math notation="LaTeX">A(n, d) </tex-math></inline-formula>, including efforts to determine it as well to derive bounds on <inline-formula> <tex-math notation="LaTeX">A(n, d) </tex-math></inline-formula> for large <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>'s, is one of the most fundamental subjects in coding theory. In this paper, we explore new lower and upper bounds on <inline-formula> <tex-math notation="LaTeX">A(n, d) </tex-math></inline-formula> in the large-minimum distance regime, in particular, when <inline-formula> <tex-math notation="LaTeX">d = n/2 - \Omega (\sqrt {n}) </tex-math></inline-formula>. We first provide a new construction of cyclic codes, by carefully selecting specific roots in the binary extension field for the check polynomial, with length <inline-formula> <tex-math notation="LaTeX">n= 2^{m} -1 </tex-math></inline-formula>, distance <inline-formula> <tex-math notation="LaTeX">d \geq n/2 - 2^{c-1}\sqrt {n} </tex-math></inline-formula>, and size <inline-formula> <tex-math notation="LaTeX">n^{c+1/2} </tex-math></inline-formula>, for any <inline-formula> <tex-math notation="LaTeX">m\geq 4 </tex-math></inline-formula> and any integer <inline-formula> <tex-math notation="LaTeX">c </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">0 \leq c \leq m/2 - 1 </tex-math></inline-formula>. These code parameters are slightly worse than those of the Delsarte-Goethals (DG) codes that provide the previously known best lower bound in the large-minimum distance regime. However, using a similar and extended code construction technique we show a sequence of cyclic codes that improve upon DG codes and provide the best lower bound in a narrower range of the minimum distance <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula>, in particular, when <inline-formula> <tex-math notation="LaTeX">d = n/2 - \Omega (n^{2/3}) </tex-math></inline-formula>. Furthermore, by leveraging a Fourier-analytic view of Delsarte's linear program, upper bounds on <inline-formula> <tex-math notation="LaTeX">A(n, \left \lceil{ n/2 - \rho \sqrt {n}\, }\right \rceil) </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">\rho \in (0.5, 9.5) </tex-math></inline-formula> are obtained that scale polynomially in <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>. To the best of authors' knowledge, the upper bound due to Barg and Nogin (2006) is the only previously known upper bound that scale polynomially in <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> in this regime. We numerically demonstrate that our upper bound improves upon the Barg-Nogin upper bound in the specified high-minimum distance regime.
AbstractList Let [Formula Omitted] denote the maximum size of a binary code of length [Formula Omitted] and minimum Hamming distance [Formula Omitted]. Studying [Formula Omitted], including efforts to determine it as well to derive bounds on [Formula Omitted] for large [Formula Omitted]’s, is one of the most fundamental subjects in coding theory. In this paper, we explore new lower and upper bounds on [Formula Omitted] in the large-minimum distance regime, in particular, when [Formula Omitted]. We first provide a new construction of cyclic codes, by carefully selecting specific roots in the binary extension field for the check polynomial, with length [Formula Omitted], distance [Formula Omitted], and size [Formula Omitted], for any [Formula Omitted] and any integer [Formula Omitted] with [Formula Omitted]. These code parameters are slightly worse than those of the Delsarte–Goethals (DG) codes that provide the previously known best lower bound in the large-minimum distance regime. However, using a similar and extended code construction technique we show a sequence of cyclic codes that improve upon DG codes and provide the best lower bound in a narrower range of the minimum distance [Formula Omitted], in particular, when [Formula Omitted]. Furthermore, by leveraging a Fourier-analytic view of Delsarte’s linear program, upper bounds on [Formula Omitted] with [Formula Omitted] are obtained that scale polynomially in [Formula Omitted]. To the best of authors’ knowledge, the upper bound due to Barg and Nogin (2006) is the only previously known upper bound that scale polynomially in [Formula Omitted] in this regime. We numerically demonstrate that our upper bound improves upon the Barg-Nogin upper bound in the specified high-minimum distance regime.
Let <inline-formula> <tex-math notation="LaTeX">A(n, d) </tex-math></inline-formula> denote the maximum size of a binary code of length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> and minimum Hamming distance <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula>. Studying <inline-formula> <tex-math notation="LaTeX">A(n, d) </tex-math></inline-formula>, including efforts to determine it as well to derive bounds on <inline-formula> <tex-math notation="LaTeX">A(n, d) </tex-math></inline-formula> for large <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>'s, is one of the most fundamental subjects in coding theory. In this paper, we explore new lower and upper bounds on <inline-formula> <tex-math notation="LaTeX">A(n, d) </tex-math></inline-formula> in the large-minimum distance regime, in particular, when <inline-formula> <tex-math notation="LaTeX">d = n/2 - \Omega (\sqrt {n}) </tex-math></inline-formula>. We first provide a new construction of cyclic codes, by carefully selecting specific roots in the binary extension field for the check polynomial, with length <inline-formula> <tex-math notation="LaTeX">n= 2^{m} -1 </tex-math></inline-formula>, distance <inline-formula> <tex-math notation="LaTeX">d \geq n/2 - 2^{c-1}\sqrt {n} </tex-math></inline-formula>, and size <inline-formula> <tex-math notation="LaTeX">n^{c+1/2} </tex-math></inline-formula>, for any <inline-formula> <tex-math notation="LaTeX">m\geq 4 </tex-math></inline-formula> and any integer <inline-formula> <tex-math notation="LaTeX">c </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">0 \leq c \leq m/2 - 1 </tex-math></inline-formula>. These code parameters are slightly worse than those of the Delsarte-Goethals (DG) codes that provide the previously known best lower bound in the large-minimum distance regime. However, using a similar and extended code construction technique we show a sequence of cyclic codes that improve upon DG codes and provide the best lower bound in a narrower range of the minimum distance <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula>, in particular, when <inline-formula> <tex-math notation="LaTeX">d = n/2 - \Omega (n^{2/3}) </tex-math></inline-formula>. Furthermore, by leveraging a Fourier-analytic view of Delsarte's linear program, upper bounds on <inline-formula> <tex-math notation="LaTeX">A(n, \left \lceil{ n/2 - \rho \sqrt {n}\, }\right \rceil) </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">\rho \in (0.5, 9.5) </tex-math></inline-formula> are obtained that scale polynomially in <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>. To the best of authors' knowledge, the upper bound due to Barg and Nogin (2006) is the only previously known upper bound that scale polynomially in <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> in this regime. We numerically demonstrate that our upper bound improves upon the Barg-Nogin upper bound in the specified high-minimum distance regime.
Author Pang, James Chin-Jen
Pradhan, S. Sandeep
Mahdavifar, Hessam
Author_xml – sequence: 1
  givenname: James Chin-Jen
  orcidid: 0000-0002-0735-8967
  surname: Pang
  fullname: Pang, James Chin-Jen
  email: cjpang@umich.edu
  organization: Department of Electrical Engineering and Computer Science, University of Michigan at Ann Arbor, Ann Arbor, MI, USA
– sequence: 2
  givenname: Hessam
  orcidid: 0000-0001-9021-1992
  surname: Mahdavifar
  fullname: Mahdavifar, Hessam
  email: hessam@umich.edu
  organization: Department of Electrical Engineering and Computer Science, University of Michigan at Ann Arbor, Ann Arbor, MI, USA
– sequence: 3
  givenname: S. Sandeep
  orcidid: 0000-0001-8406-4404
  surname: Pradhan
  fullname: Pradhan, S. Sandeep
  email: pradhanv@umich.edu
  organization: Department of Electrical Engineering and Computer Science, University of Michigan at Ann Arbor, Ann Arbor, MI, USA
BookMark eNpNkE1PAjEQhhuDiYj8AeOhiWdw2m672yPgFwb1AMZjU3ZnpURa3O7G6K93EQ6cZg7v807mOScdHzwScslgyBjom6f5aLoYcuBiKLiWmVAnpMtVwgZZmkLnaD8j_RjXAMA5S9Is7ZLxC37TcWh8EWnwtF4hnbtfpKGkY-dt9UMnocBI3129ojNbfSB9dt5tmg29dbG2PscLclraz4j9w-yRt_u7xeRxMHt9mE5Gs0HOk7QeJEtdMCaTpRBFXpaKF6BLIbWyoDjI1Apg3MKSaZUXNmEKdMGzRKDMALRG0SPX-95tFb4ajLVZh6by7UnT5lKtpJTQpvg-lVchxgpLs63cpn3EMDA7XeZfl9npMgddLXS1hxwiHgEsk0xy8QcV8mUZ
CODEN IJSTL5
Cites_doi 10.1080/00029890.2020.1704166
10.1016/S0019-9958(80)90709-3
10.1109/TIT.1983.1056743
10.1109/TCOMM.2021.3064327
10.1016/S0019-9958(70)90214-7
10.1016/S0019-9958(76)90384-3
10.1109/ISIT45174.2021.9518274
10.1049/el:19740375
10.1109/CSCN.2016.7785170
10.1109/TIT.1968.1054127
10.1002/j.1538-7305.1952.tb01393.x
10.1109/ISIT45174.2021.9517788
10.1016/0012-365X(90)90010-F
10.1090/dimacs/056/02
10.1109/TIT.1977.1055688
10.1109/TWC.2022.3159807
10.1007/s10623-005-6118-6
10.1016/S0024-3795(99)00271-2
10.1109/ITW46852.2021.9457589
10.1109/TCOMM.2016.2606410
10.1109/ISIT.1997.612999
10.1109/TIT.1960.1057584
10.1109/TIT.2023.3236660
10.1109/COMST.2022.3151028
10.1109/ITW44776.2019.8989142
10.1142/9789812832245_0002
10.1109/TIT.2004.831751
10.1134/S0032946006020025
10.2307/2045978
10.1137/S0895480102408353
10.1109/TIT.2008.928288
10.1007/s00454-008-9128-0
10.1109/TCOMM.2022.3204286
10.1016/S0019-9958(60)90287-4
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JSAIT.2023.3295836
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2641-8770
EndPage 231
ExternalDocumentID 10_1109_JSAIT_2023_3295836
10185152
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF–2132815; CCF–1909771
  funderid: 10.13039/100000001
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c247t-4b9d1154b33dcff62d09f3596a062057a3012a0b196cda41609d2843e580099e3
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001395977100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2641-8770
IngestDate Mon Jun 30 05:01:07 EDT 2025
Sat Nov 29 05:41:02 EST 2025
Wed Aug 27 02:09:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-4b9d1154b33dcff62d09f3596a062057a3012a0b196cda41609d2843e580099e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9021-1992
0000-0001-8406-4404
0000-0002-0735-8967
PQID 2847965550
PQPubID 5075791
PageCount 13
ParticipantIDs crossref_primary_10_1109_JSAIT_2023_3295836
proquest_journals_2847965550
ieee_primary_10185152
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal on selected areas in information theory
PublicationTitleAbbrev JSAIT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References samorodnitsky (ref22) 2021
spasov (ref11) 2009
ref53
litsyn (ref14) 1998
ref52
ref10
tsfasman (ref13) 2013; 58
ref17
ref18
dumer (ref34) 2021
delsarte (ref19) 1973; 10
ref50
reed (ref51) 2012; 508
varshamov (ref6) 1957; 117
ref46
hocquenghem (ref49) 1959; 2
ref45
ref48
ref47
ye (ref12) 2021
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref5
sidelnikov (ref40) 1971; 196
ref35
ref37
ref36
ref31
ref30
ref33
van lint (ref4) 1998; 86
ref1
ref39
ref38
agrell (ref15) 2015
kahn (ref54) 1989
brouwer (ref16) 2022
dumer (ref32) 2020
guruswami (ref3) 2022
ref24
ref23
ref20
ref21
ref28
ref27
macwilliams (ref2) 1977; 16
coregliano (ref25) 2021
ref29
loyfer (ref26) 2022
References_xml – year: 2022
  ident: ref16
  publication-title: Table of General Binary Codes
– ident: ref53
  doi: 10.1080/00029890.2020.1704166
– start-page: 1
  year: 2021
  ident: ref34
  article-title: Combined polar-DPC design for channels with high noise
  publication-title: Proc IEEE Inf Theory Workshop
– volume: 117
  start-page: 739
  year: 1957
  ident: ref6
  article-title: Estimate of the number of signals in error correcting codes
  publication-title: Doklady Akademiia Nauk SSSR
– ident: ref41
  doi: 10.1016/S0019-9958(80)90709-3
– year: 2021
  ident: ref22
  article-title: One more proof of the first linear programming bound for binary codes and two conjectures
  publication-title: arXiv 2104 14587
– volume: 16
  year: 1977
  ident: ref2
  publication-title: The Theory of Error Correcting Codes
– ident: ref7
  doi: 10.1109/TIT.1983.1056743
– ident: ref36
  doi: 10.1109/TCOMM.2021.3064327
– ident: ref44
  doi: 10.1016/S0019-9958(70)90214-7
– ident: ref46
  doi: 10.1016/S0019-9958(76)90384-3
– ident: ref31
  doi: 10.1109/ISIT45174.2021.9518274
– ident: ref45
  doi: 10.1049/el:19740375
– ident: ref28
  doi: 10.1109/CSCN.2016.7785170
– ident: ref43
  doi: 10.1109/TIT.1968.1054127
– ident: ref5
  doi: 10.1002/j.1538-7305.1952.tb01393.x
– ident: ref37
  doi: 10.1109/ISIT45174.2021.9517788
– ident: ref47
  doi: 10.1016/0012-365X(90)90010-F
– ident: ref24
  doi: 10.1090/dimacs/056/02
– ident: ref18
  doi: 10.1109/TIT.1977.1055688
– year: 2022
  ident: ref26
  article-title: Linear programming hierarchies in coding theory: Dual solutions
  publication-title: arXiv 2211 12977
– volume: 86
  year: 1998
  ident: ref4
  publication-title: Introduction to Coding Theory
– start-page: 173
  year: 2009
  ident: ref11
  article-title: Some notes on the binary Gilbert-Varshamov bound
  publication-title: Proc 6th Int Workshop Optimal Codes Related Topics
– ident: ref39
  doi: 10.1109/TWC.2022.3159807
– year: 2021
  ident: ref12
  article-title: Improving the Gilbert-Varshamov bound by graph spectral method
  publication-title: arXiv 2104 01403
– ident: ref9
  doi: 10.1007/s10623-005-6118-6
– ident: ref8
  doi: 10.1016/S0024-3795(99)00271-2
– start-page: 68
  year: 1989
  ident: ref54
  article-title: The influence of variables on Boolean functions
  publication-title: Proc 29th Annu Symp Found Comput Sci
– start-page: 101
  year: 2020
  ident: ref32
  article-title: Codes for high-noise memoryless channels
  publication-title: Proc IEEE Int Symp Inf Theory
– year: 1998
  ident: ref14
  article-title: An update table of the best binary codes known
  publication-title: Handbook of Coding Theory
– volume: 10
  start-page: 197
  year: 1973
  ident: ref19
  article-title: An algebraic approach to the association schemes of coding theory
  publication-title: Philips Res Rep
– volume: 2
  start-page: 147
  year: 1959
  ident: ref49
  article-title: Codes correcteurs d'erreurs
  publication-title: Chiffers
– ident: ref33
  doi: 10.1109/ITW46852.2021.9457589
– ident: ref29
  doi: 10.1109/TCOMM.2016.2606410
– ident: ref42
  doi: 10.1109/ISIT.1997.612999
– ident: ref48
  doi: 10.1109/TIT.1960.1057584
– ident: ref27
  doi: 10.1109/TIT.2023.3236660
– ident: ref38
  doi: 10.1109/COMST.2022.3151028
– ident: ref30
  doi: 10.1109/ITW44776.2019.8989142
– ident: ref23
  doi: 10.1142/9789812832245_0002
– ident: ref10
  doi: 10.1109/TIT.2004.831751
– ident: ref1
  doi: 10.1134/S0032946006020025
– volume: 58
  year: 2013
  ident: ref13
  publication-title: Algebraic-Geometric Codes
– year: 2015
  ident: ref15
  publication-title: Bounds for Unrestricted Binary Codes
– ident: ref52
  doi: 10.2307/2045978
– ident: ref20
  doi: 10.1137/S0895480102408353
– volume: 508
  year: 2012
  ident: ref51
  publication-title: Error-Control Coding for Data Networks
– ident: ref17
  doi: 10.1109/TIT.2008.928288
– ident: ref21
  doi: 10.1007/s00454-008-9128-0
– ident: ref35
  doi: 10.1109/TCOMM.2022.3204286
– year: 2021
  ident: ref25
  article-title: A complete linear programming hierarchy for linear codes
  publication-title: arXiv 2112 09221
– year: 2022
  ident: ref3
  publication-title: Coding Theory the Essentials
– ident: ref50
  doi: 10.1016/S0019-9958(60)90287-4
– volume: 196
  start-page: 531
  year: 1971
  ident: ref40
  article-title: On mutual correlation of sequences
  publication-title: Doklady Akademii Nauk
SSID ssj0002214787
Score 2.2341905
Snippet Let <inline-formula> <tex-math notation="LaTeX">A(n, d) </tex-math></inline-formula> denote the maximum size of a binary code of length <inline-formula>...
Let [Formula Omitted] denote the maximum size of a binary code of length [Formula Omitted] and minimum Hamming distance [Formula Omitted]. Studying [Formula...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 219
SubjectTerms Binary codes
Codes
Eigenvalues and eigenfunctions
Error correction codes
Hamming distances
Harmonic analysis
Information theory
Lower bounds
Polynomials
Reed-Muller codes
Upper bound
Upper bounds
Title New Bounds on the Size of Binary Codes With Large Minimum Distance
URI https://ieeexplore.ieee.org/document/10185152
https://www.proquest.com/docview/2847965550
Volume 4
WOSCitedRecordID wos001395977100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2641-8770
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002214787
  issn: 2641-8770
  databaseCode: RIE
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmChfBRRKMgDG0pr8u2xLVSASoXUIrpFiX0WGZqgJmXg13N2EkBCDEgZMiRW9JK79-z47hFyqYk4RmqxQkgSy-WgrFA4yvLhmuGhXAWmu_40mM3C5ZI_1cXqphYGAMzmM-jrU_MvX-Zio5fKBrq7FPIvZtztIAiqYq2vBRVbO-6EQVMYw_jgYT68X_S1P3jfsblXtWH-Jh_jpvIrBRtembT_-UT7ZK8WkHRYvfEDsgXZIWk35gy0jtUjMsL0RUfaNKmgeUZR59F5-gE0V3RkanDpOJdQ0Je0fKVTvR-cPqZZutqs6I3WlDhIhzxPbhfjO6s2TLCE7Qal5SZc6vY6ieNIoZRvS8aV43E_Zr6NwizGaLZjlmDUCRmjFGNcIj054IVaKYJzTFpZnsEJoQyTpFCcoZqSbix87kqWiACxhBCx9brkqkEyeqv6YkRmPsF4ZHCPNO5RjXuXdDR2P66sYOuSXoN-VMdOEWnC5L6HU6fTP247I7t69GolpEda5XoD52RHvJdpsb4wn8UnP2WzyQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsJAFJ0YNdGN-MCIos7CnSkMfc8SUAJaiAkY2TXtPGIXtIYWF369d6atmhgXJl100VdOe-85M517D0I3iogjoBbDF3Fs2FRIw2eWNFzRI7BJWwrdXT_wZjN_uaRPVbG6roURQujFZ6KjdvW_fJ6xjZoq66ruUsC_kHF3HNs2e2W51teUiqk8d3yvLo0htPsw708WHeUQ3rFM6pSNmL_pR_up_ErCmllGjX8-0yE6qCQk7pfv_AhtifQYNWp7BlxF6wkaQALDA2WblOMsxaD08Dz5EDiTeKCrcPEw4yLHL0nxigO1IhxPkzRZbVb4TqlKuEgTPY_uF8OxUVkmGMy0vcKwY8pVg53YsjiT0jU5odJyqBsR1wRpFkE8mxGJIe4Yj0CMEcqBoCzh-EorCusUbadZKs4QJpAmmaQE9BS3I-ZSm5OYeYCl8AFbp4VuayTDt7IzRqhHFISGGvdQ4R5WuLdQU2H348gSthZq1-iHVfTkoaJM6joweDr_47RrtDdeTIMwmMweL9C-ulM5L9JG28V6Iy7RLnsvknx9pT-RT8sntxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Bounds+on+the+Size+of+Binary+Codes+With+Large+Minimum+Distance&rft.jtitle=IEEE+journal+on+selected+areas+in+information+theory&rft.au=Pang%2C+James+Chin-Jen&rft.au=Mahdavifar%2C+Hessam&rft.au=Pradhan%2C+S.+Sandeep&rft.date=2023&rft.pub=IEEE&rft.eissn=2641-8770&rft.volume=4&rft.spage=219&rft.epage=231&rft_id=info:doi/10.1109%2FJSAIT.2023.3295836&rft.externalDocID=10185152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2641-8770&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2641-8770&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2641-8770&client=summon