Simultaneous Coordinate Maximization Algorithm for Maximum A Posteriori Compton Camera Imaging With Markov Random Field Prior

It is widely acknowledged that maximum a posteriori (MAP) estimation, when combined with a Markov random field (MRF) prior, is an effective tool for Compton camera imaging from Poisson data. While MAP estimation involves solving an optimization problem, the primary challenge arises from the correlat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on instrumentation and measurement Ročník 74; s. 1 - 17
Hlavní autoři: Le, Nhan, Snoussi, Hichem, Iltis, Alain
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9456, 1557-9662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract It is widely acknowledged that maximum a posteriori (MAP) estimation, when combined with a Markov random field (MRF) prior, is an effective tool for Compton camera imaging from Poisson data. While MAP estimation involves solving an optimization problem, the primary challenge arises from the correlation inherent in the MRF prior. Unlike most existing expectation maximization (EM)-like algorithms that address this challenge indirectly, we propose a simultaneous coordinate maximization (SCM) algorithm to directly handle convex MRF priors. Basically, the proposed algorithm breaks the correlation within MRF in the same way as sequential coordinate ascent (CA) algorithms; however, it allows updating all coordinates simultaneously at each iteration, rather than one coordinate or one block of coordinates sequentially. It is thus applicable to large-scale optimization problems, and hence especially suitable for high-dimensional Compton image reconstruction in real time. We prove the convergence of the SCM algorithm and analyze its convergence rate and complexity using both analytical and numerical methods. In light of the SCM algorithm, we develop a closed-form algorithm called MAP-SCM-EM for Compton camera imaging under the assumption of the EM surrogate of the Poisson log-likelihood function and the zero-mean Gaussian MRF prior. Numerous comparative studies with more classical reconstruction algorithms using real-world data, conducted with hand-held CeBr 3 Temporal Compton cameras developed by Damavan company, have confirmed that our algorithm offers a good compromise between speed and accuracy of reconstruction.
AbstractList It is widely acknowledged that maximum a posteriori (MAP) estimation, when combined with a Markov random field (MRF) prior, is an effective tool for Compton camera imaging from Poisson data. While MAP estimation involves solving an optimization problem, the primary challenge arises from the correlation inherent in the MRF prior. Unlike most existing expectation maximization (EM)-like algorithms that address this challenge indirectly, we propose a simultaneous coordinate maximization (SCM) algorithm to directly handle convex MRF priors. Basically, the proposed algorithm breaks the correlation within MRF in the same way as sequential coordinate ascent (CA) algorithms; however, it allows updating all coordinates simultaneously at each iteration, rather than one coordinate or one block of coordinates sequentially. It is thus applicable to large-scale optimization problems, and hence especially suitable for high-dimensional Compton image reconstruction in real time. We prove the convergence of the SCM algorithm and analyze its convergence rate and complexity using both analytical and numerical methods. In light of the SCM algorithm, we develop a closed-form algorithm called MAP-SCM-EM for Compton camera imaging under the assumption of the EM surrogate of the Poisson log-likelihood function and the zero-mean Gaussian MRF prior. Numerous comparative studies with more classical reconstruction algorithms using real-world data, conducted with hand-held CeBr3 Temporal Compton cameras developed by Damavan company, have confirmed that our algorithm offers a good compromise between speed and accuracy of reconstruction.
It is widely acknowledged that maximum a posteriori (MAP) estimation, when combined with a Markov random field (MRF) prior, is an effective tool for Compton camera imaging from Poisson data. While MAP estimation involves solving an optimization problem, the primary challenge arises from the correlation inherent in the MRF prior. Unlike most existing expectation maximization (EM)-like algorithms that address this challenge indirectly, we propose a simultaneous coordinate maximization (SCM) algorithm to directly handle convex MRF priors. Basically, the proposed algorithm breaks the correlation within MRF in the same way as sequential coordinate ascent (CA) algorithms; however, it allows updating all coordinates simultaneously at each iteration, rather than one coordinate or one block of coordinates sequentially. It is thus applicable to large-scale optimization problems, and hence especially suitable for high-dimensional Compton image reconstruction in real time. We prove the convergence of the SCM algorithm and analyze its convergence rate and complexity using both analytical and numerical methods. In light of the SCM algorithm, we develop a closed-form algorithm called MAP-SCM-EM for Compton camera imaging under the assumption of the EM surrogate of the Poisson log-likelihood function and the zero-mean Gaussian MRF prior. Numerous comparative studies with more classical reconstruction algorithms using real-world data, conducted with hand-held CeBr 3 Temporal Compton cameras developed by Damavan company, have confirmed that our algorithm offers a good compromise between speed and accuracy of reconstruction.
Author Snoussi, Hichem
Iltis, Alain
Le, Nhan
Author_xml – sequence: 1
  givenname: Nhan
  orcidid: 0000-0003-3873-2795
  surname: Le
  fullname: Le, Nhan
  email: thi-ai-nhan.le@utt.fr
  organization: Computer Science and Digital Society Laboratory, Troyes University of Technology, Troyes, France
– sequence: 2
  givenname: Hichem
  orcidid: 0000-0002-6563-2135
  surname: Snoussi
  fullname: Snoussi, Hichem
  email: hichem.snoussi@utt.fr
  organization: Computer Science and Digital Society Laboratory, Troyes University of Technology, Troyes, France
– sequence: 3
  givenname: Alain
  orcidid: 0000-0002-3443-5390
  surname: Iltis
  fullname: Iltis, Alain
  email: alain.iltis@damavan-imaging.com
  organization: Damavan Imaging, Troyes, France
BookMark eNpFkEFLwzAUgINMcJvePXgIeO58SZukOY7hdLCh6MRjydbXmbk0M21FBf-7LRt4eof3fe_BNyC90pdIyCWDEWOgb5azxYgDF6NYSB0LdkL6TAgVaSl5j_QBWBrpRMgzMqiqLQAomag--X22rtnVpkTfVHTifchtaWqkC_Nlnf0xtfUlHe82Ptj6zdHCh8OqcXRMH31VY7DtrlXdvm7RiXEYDJ05s7Hlhr62ViuEd_9Jn0yZe0enFnc5fey0c3JamF2FF8c5JC_T2-XkPpo_3M0m43m05omqoxgVrmSqV-sVclOIJIfUoIaUK13olCeSr3NRSJ4ySAqJAhSg5AWoFROcs3hIrg9398F_NFjV2dY3oWxfZjFnQosEREfBgVoHX1UBi2wfrDPhO2OQdZGzNnLWRc6OkVvl6qBYRPzHGQBXgsd_N6B7AQ
CODEN IEIMAO
Cites_doi 10.1088/0031-9155/53/12/009
10.1097/00004728-198404000-00002
10.1137/120887679
10.1109/TMI.2010.2098036
10.1109/TNS.2011.2121093
10.1088/0031-9155/61/1/243
10.1504/IJMMNO.2013.055204
10.1109/NSSMIC.2015.7582117
10.1109/TMI.2013.2265886
10.1109/42.363108
10.1016/s0003-2670(00)82860-3
10.1109/TMI.2004.831224
10.3390/s22197374
10.1109/nssmic.2018.8824429
10.1016/j.zemedi.2022.04.005
10.1109/NSSMIC.2004.1466463
10.1016/B978-012744482-6.50023-5
10.1137/1.9781611977134
10.1088/0031-9155/57/21/6779
10.1109/TRPMS.2019.2937675
10.1109/TMI.1987.4307796
10.1097/00004728-198312000-00071
10.1109/TNS.2008.2007951
10.1016/j.compbiomed.2023.107502
10.1016/j.amc.2003.08.058
10.3390/psf2023009002
10.1109/42.700734
10.1007/0-387-34946-4_1
10.1088/1361-6560/abe65f
10.1117/3.831079.ch1
10.1088/1361-6560/aac8cd
10.1109/78.193196
10.1088/0031-9155/61/8/3127
10.1088/0031-9155/51/15/R01
10.1109/TMI.2003.817767
10.1109/23.819285
10.1118/1.4959551
10.1080/17415977.2021.2011863
10.1016/0168-583X(95)80085-9
10.3109/0284186X.2011.580001
10.1109/TMI.2003.812249
10.1109/42.52985
10.1007/978-3-642-45898-9_6
10.1109/ICIP.1996.560890
10.1103/PhysRev.21.483
10.1109/TIM.2022.3165275
10.1109/42.14509
10.1109/TMI.1987.4307826
10.5109/13440
10.1109/TRPMS.2019.2929423
10.1109/83.491321
10.1016/j.net.2023.06.035
10.1109/42.563662
10.1109/78.324732
10.1118/1.3528170
10.1007/978-3-319-91578-4
10.1364/JOSAA.14.002914
10.1109/42.370409
10.1007/978-3-030-85450-8
10.1088/1361-6560/ac73d2
10.1109/42.61759
10.1109/NSSMIC.2018.8824289
10.1109/23.873014
10.1002/mp.13123
10.1051/epjconf/202328806003
10.1038/s41598-017-02377-w
10.1088/1361-6560/ab280c
10.1016/j.nima.2007.01.171
10.1109/TCI.2020.3008782
10.1016/B978-012744482-6.50024-7
10.1109/TMI.1987.4307810
10.1109/TPAMI.1984.4767596
10.1364/AO.36.008352
10.1109/NSSMIC.1998.773871
10.1007/s10107-015-0892-3
10.1109/TMI.1982.4307558
10.1137/1.9781611974997
10.1109/TIP.2010.2058811
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2025.3569351
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 17
ExternalDocumentID 10_1109_TIM_2025_3569351
11002752
Genre orig-research
GrantInformation_xml – fundername: ANR RED-7D project and BPI PIA4 Dream-Scanner project
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c247t-3e7eb689bcbe2af54d08ae908279f982462cd5f628104f6e5070e62f07b152213
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502506800037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 07:36:51 EDT 2025
Sat Nov 29 07:52:22 EST 2025
Wed Aug 27 01:52:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-3e7eb689bcbe2af54d08ae908279f982462cd5f628104f6e5070e62f07b152213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6563-2135
0000-0003-3873-2795
0000-0002-3443-5390
PQID 3215954051
PQPubID 85462
PageCount 17
ParticipantIDs ieee_primary_11002752
proquest_journals_3215954051
crossref_primary_10_1109_TIM_2025_3569351
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Caffrey (ref74) 2019
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
Li (ref20) 2009
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref34
  doi: 10.1088/0031-9155/53/12/009
– ident: ref55
  doi: 10.1097/00004728-198404000-00002
– ident: ref57
  doi: 10.1137/120887679
– ident: ref42
  doi: 10.1109/TMI.2010.2098036
– ident: ref59
  doi: 10.1109/TNS.2011.2121093
– ident: ref66
  doi: 10.1088/0031-9155/61/1/243
– ident: ref58
  doi: 10.1504/IJMMNO.2013.055204
– ident: ref73
  doi: 10.1109/NSSMIC.2015.7582117
– ident: ref37
  doi: 10.1109/TMI.2013.2265886
– ident: ref12
  doi: 10.1109/42.363108
– ident: ref60
  doi: 10.1016/s0003-2670(00)82860-3
– ident: ref26
  doi: 10.1109/TMI.2004.831224
– ident: ref1
  doi: 10.3390/s22197374
– ident: ref50
  doi: 10.1109/nssmic.2018.8824429
– ident: ref44
  doi: 10.1016/j.zemedi.2022.04.005
– ident: ref31
  doi: 10.1109/NSSMIC.2004.1466463
– ident: ref3
  doi: 10.1016/B978-012744482-6.50023-5
– ident: ref22
  doi: 10.1137/1.9781611977134
– ident: ref36
  doi: 10.1088/0031-9155/57/21/6779
– ident: ref43
  doi: 10.1109/TRPMS.2019.2937675
– ident: ref10
  doi: 10.1109/TMI.1987.4307796
– ident: ref78
  doi: 10.1097/00004728-198312000-00071
– ident: ref65
  doi: 10.1109/TNS.2008.2007951
– ident: ref70
  doi: 10.1016/j.compbiomed.2023.107502
– ident: ref47
  doi: 10.1016/j.amc.2003.08.058
– ident: ref46
  doi: 10.3390/psf2023009002
– ident: ref9
  doi: 10.1109/42.700734
– year: 2019
  ident: ref74
  article-title: The development and evaluation of a Compton camera for imaging spent fuel rod assemblies
– ident: ref75
  doi: 10.1007/0-387-34946-4_1
– volume-title: Markov Random Field Modeling in Image Analysis
  year: 2009
  ident: ref20
– ident: ref14
  doi: 10.1088/1361-6560/abe65f
– ident: ref28
  doi: 10.1117/3.831079.ch1
– ident: ref71
  doi: 10.1088/1361-6560/aac8cd
– ident: ref29
  doi: 10.1109/78.193196
– ident: ref77
  doi: 10.1088/0031-9155/61/8/3127
– ident: ref21
  doi: 10.1088/0031-9155/51/15/R01
– ident: ref72
  doi: 10.1109/TMI.2003.817767
– ident: ref63
  doi: 10.1109/23.819285
– ident: ref38
  doi: 10.1118/1.4959551
– ident: ref53
  doi: 10.1080/17415977.2021.2011863
– ident: ref2
  doi: 10.1016/0168-583X(95)80085-9
– ident: ref6
  doi: 10.3109/0284186X.2011.580001
– ident: ref18
  doi: 10.1109/TMI.2003.812249
– ident: ref23
  doi: 10.1109/42.52985
– ident: ref80
  doi: 10.1007/978-3-642-45898-9_6
– ident: ref76
  doi: 10.1109/ICIP.1996.560890
– ident: ref79
  doi: 10.1103/PhysRev.21.483
– ident: ref32
  doi: 10.1109/TIM.2022.3165275
– ident: ref11
  doi: 10.1109/42.14509
– ident: ref16
  doi: 10.1109/TMI.1987.4307826
– ident: ref7
  doi: 10.5109/13440
– ident: ref41
  doi: 10.1109/TRPMS.2019.2929423
– ident: ref27
  doi: 10.1109/83.491321
– ident: ref40
  doi: 10.1016/j.net.2023.06.035
– ident: ref30
  doi: 10.1109/42.563662
– ident: ref13
  doi: 10.1109/78.324732
– ident: ref35
  doi: 10.1118/1.3528170
– ident: ref49
  doi: 10.1007/978-3-319-91578-4
– ident: ref52
  doi: 10.1364/JOSAA.14.002914
– ident: ref25
  doi: 10.1109/42.370409
– ident: ref48
  doi: 10.1007/978-3-030-85450-8
– ident: ref69
  doi: 10.1088/1361-6560/ac73d2
– ident: ref24
  doi: 10.1109/42.61759
– ident: ref68
  doi: 10.1109/NSSMIC.2018.8824289
– ident: ref5
  doi: 10.1109/23.873014
– ident: ref15
  doi: 10.1002/mp.13123
– ident: ref61
  doi: 10.1051/epjconf/202328806003
– ident: ref67
  doi: 10.1038/s41598-017-02377-w
– ident: ref39
  doi: 10.1088/1361-6560/ab280c
– ident: ref64
  doi: 10.1016/j.nima.2007.01.171
– ident: ref62
  doi: 10.1109/TCI.2020.3008782
– ident: ref4
  doi: 10.1016/B978-012744482-6.50024-7
– ident: ref17
  doi: 10.1109/TMI.1987.4307810
– ident: ref19
  doi: 10.1109/TPAMI.1984.4767596
– ident: ref51
  doi: 10.1364/AO.36.008352
– ident: ref54
  doi: 10.1109/NSSMIC.1998.773871
– ident: ref45
  doi: 10.1007/s10107-015-0892-3
– ident: ref8
  doi: 10.1109/TMI.1982.4307558
– ident: ref56
  doi: 10.1137/1.9781611974997
– ident: ref33
  doi: 10.1109/TIP.2010.2058811
SSID ssj0007647
Score 2.4255908
Snippet It is widely acknowledged that maximum a posteriori (MAP) estimation, when combined with a Markov random field (MRF) prior, is an effective tool for Compton...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Cameras
Comparative studies
Complexity theory
Compton camera imaging
Convergence
Correlation
Estimation
Fields (mathematics)
Image reconstruction
Imaging
Markov random field (MRF)
Markov random fields
Maximization
maximum a posteriori (MAP) estimation
Numerical methods
Optimization
real-world data
reconstruction algorithm
Reconstruction algorithms
simultaneous coordinate maximization (SCM)
Title Simultaneous Coordinate Maximization Algorithm for Maximum A Posteriori Compton Camera Imaging With Markov Random Field Prior
URI https://ieeexplore.ieee.org/document/11002752
https://www.proquest.com/docview/3215954051
Volume 74
WOSCitedRecordID wos001502506800037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKBRIcKJQiFgryoRcOaRM7fh1XK1b00Kpqi-gt8mNCIzUJ2kfVS_87YycLVKgHbpEcW5EnHn-fPTMfIQdGcMsBmarEzS0ruVeZ8chSDPfaW-fKWrkkNqFOT_XVlTkbk9VTLgwApOAzOIyP6S4_9H4dj8qOYnkzpgR63CdKqSFZ67fbVbIcCmQWuIIRFmzuJHNzdHl8gkyQiUMupOGieLAHJVGVfzxx2l7mO__5Ya_IyxFH0ulg-NdkC7pd8uKv6oK75FmK7vTLN-T-oomBg7YD5Pl01iPhbDoEmfTE3jXtmIlJpzc_-kWzum4pAtmhad3SKY16vjgkttHoPRAs0pmNZ1n0uE0aR_Q79qIx66e_pee2C31L5zEyjp7Fbnvk2_zL5exrNuouZJ6VapVxiEIp2jjvgNlalCHXFqI2ujK10ayUzAdRS6aRy9USEFLmIFmdK4dogBX8Ldnu-g7eEerQJ1jFgghBlzoHq7VQIUivHEgo3IR83lii-jmU16gSLclNhVarotWq0WoTshdn_s9746RPyP7GdtW4AJcVRyhjIhot3j_S7QN5HkcfjlP2yfZqsYaP5Km_XTXLxaf0b_0CVt_NLg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQCwIOPEoRWwr4wIVD2sRvH1crVl3RXVWwiN4iv1IikQTto-LS_96xk-UhxIFbJMdJ5InH32fPzIfQW82poQGYqoDFLWPUyUw7YCmaOuWMtaySNolNyMVCXV7qiyFZPeXChBBS8Fk4iZfpLN93bhu3yk5jeTMiOXjcfc4YKfp0rZ-OVwrWl8gsYA4DMNidSub6dDmbAxck_IRyoSkv_liFkqzKX744LTDTx__5aU_QowFJ4nFv-qfoTmgP0MPf6gseoHspvtOtn6GbT3UMHTRtAKaPJx1QzroFmInn5kfdDLmYePztqlvVm68NBijbN20bPMZR0RceCW04-g-Ai3hi4m4WnjVJ5Qh_gV445v101_ijaX3X4GmMjcMXsdsh-jx9v5ycZYPyQuYIk5uMhiiVorR1NhBTceZzZUJUR5e60oowQZznlSAK2FwlAoDKPAhS5dICHiAFfY722q4NLxC24BWMJJ57r5jKg1GKS--FkzaIUNgRerezRPm9L7BRJmKS6xKsVkarlYPVRugwjvyv-4ZBH6Hjne3KYQquSwpgRkc8Whz9o9sbdP9sOT8vz2eLDy_Rg_imfnPlGO1tVtvwCt1115t6vXqd_rNbK2bQdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+Coordinate+Maximization+Algorithm+for+Maximum+A+Posteriori+Compton+Camera+Imaging+With+Markov+Random+Field+Prior&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Le%2C+Nhan&rft.au=Snoussi%2C+Hichem&rft.au=Iltis%2C+Alain&rft.date=2025&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1109%2FTIM.2025.3569351&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2025_3569351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon