Simultaneous Coordinate Maximization Algorithm for Maximum A Posteriori Compton Camera Imaging With Markov Random Field Prior
It is widely acknowledged that maximum a posteriori (MAP) estimation, when combined with a Markov random field (MRF) prior, is an effective tool for Compton camera imaging from Poisson data. While MAP estimation involves solving an optimization problem, the primary challenge arises from the correlat...
Uloženo v:
| Vydáno v: | IEEE transactions on instrumentation and measurement Ročník 74; s. 1 - 17 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9456, 1557-9662 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | It is widely acknowledged that maximum a posteriori (MAP) estimation, when combined with a Markov random field (MRF) prior, is an effective tool for Compton camera imaging from Poisson data. While MAP estimation involves solving an optimization problem, the primary challenge arises from the correlation inherent in the MRF prior. Unlike most existing expectation maximization (EM)-like algorithms that address this challenge indirectly, we propose a simultaneous coordinate maximization (SCM) algorithm to directly handle convex MRF priors. Basically, the proposed algorithm breaks the correlation within MRF in the same way as sequential coordinate ascent (CA) algorithms; however, it allows updating all coordinates simultaneously at each iteration, rather than one coordinate or one block of coordinates sequentially. It is thus applicable to large-scale optimization problems, and hence especially suitable for high-dimensional Compton image reconstruction in real time. We prove the convergence of the SCM algorithm and analyze its convergence rate and complexity using both analytical and numerical methods. In light of the SCM algorithm, we develop a closed-form algorithm called MAP-SCM-EM for Compton camera imaging under the assumption of the EM surrogate of the Poisson log-likelihood function and the zero-mean Gaussian MRF prior. Numerous comparative studies with more classical reconstruction algorithms using real-world data, conducted with hand-held CeBr 3 Temporal Compton cameras developed by Damavan company, have confirmed that our algorithm offers a good compromise between speed and accuracy of reconstruction. |
|---|---|
| AbstractList | It is widely acknowledged that maximum a posteriori (MAP) estimation, when combined with a Markov random field (MRF) prior, is an effective tool for Compton camera imaging from Poisson data. While MAP estimation involves solving an optimization problem, the primary challenge arises from the correlation inherent in the MRF prior. Unlike most existing expectation maximization (EM)-like algorithms that address this challenge indirectly, we propose a simultaneous coordinate maximization (SCM) algorithm to directly handle convex MRF priors. Basically, the proposed algorithm breaks the correlation within MRF in the same way as sequential coordinate ascent (CA) algorithms; however, it allows updating all coordinates simultaneously at each iteration, rather than one coordinate or one block of coordinates sequentially. It is thus applicable to large-scale optimization problems, and hence especially suitable for high-dimensional Compton image reconstruction in real time. We prove the convergence of the SCM algorithm and analyze its convergence rate and complexity using both analytical and numerical methods. In light of the SCM algorithm, we develop a closed-form algorithm called MAP-SCM-EM for Compton camera imaging under the assumption of the EM surrogate of the Poisson log-likelihood function and the zero-mean Gaussian MRF prior. Numerous comparative studies with more classical reconstruction algorithms using real-world data, conducted with hand-held CeBr3 Temporal Compton cameras developed by Damavan company, have confirmed that our algorithm offers a good compromise between speed and accuracy of reconstruction. It is widely acknowledged that maximum a posteriori (MAP) estimation, when combined with a Markov random field (MRF) prior, is an effective tool for Compton camera imaging from Poisson data. While MAP estimation involves solving an optimization problem, the primary challenge arises from the correlation inherent in the MRF prior. Unlike most existing expectation maximization (EM)-like algorithms that address this challenge indirectly, we propose a simultaneous coordinate maximization (SCM) algorithm to directly handle convex MRF priors. Basically, the proposed algorithm breaks the correlation within MRF in the same way as sequential coordinate ascent (CA) algorithms; however, it allows updating all coordinates simultaneously at each iteration, rather than one coordinate or one block of coordinates sequentially. It is thus applicable to large-scale optimization problems, and hence especially suitable for high-dimensional Compton image reconstruction in real time. We prove the convergence of the SCM algorithm and analyze its convergence rate and complexity using both analytical and numerical methods. In light of the SCM algorithm, we develop a closed-form algorithm called MAP-SCM-EM for Compton camera imaging under the assumption of the EM surrogate of the Poisson log-likelihood function and the zero-mean Gaussian MRF prior. Numerous comparative studies with more classical reconstruction algorithms using real-world data, conducted with hand-held CeBr 3 Temporal Compton cameras developed by Damavan company, have confirmed that our algorithm offers a good compromise between speed and accuracy of reconstruction. |
| Author | Snoussi, Hichem Iltis, Alain Le, Nhan |
| Author_xml | – sequence: 1 givenname: Nhan orcidid: 0000-0003-3873-2795 surname: Le fullname: Le, Nhan email: thi-ai-nhan.le@utt.fr organization: Computer Science and Digital Society Laboratory, Troyes University of Technology, Troyes, France – sequence: 2 givenname: Hichem orcidid: 0000-0002-6563-2135 surname: Snoussi fullname: Snoussi, Hichem email: hichem.snoussi@utt.fr organization: Computer Science and Digital Society Laboratory, Troyes University of Technology, Troyes, France – sequence: 3 givenname: Alain orcidid: 0000-0002-3443-5390 surname: Iltis fullname: Iltis, Alain email: alain.iltis@damavan-imaging.com organization: Damavan Imaging, Troyes, France |
| BookMark | eNpFkEFLwzAUgINMcJvePXgIeO58SZukOY7hdLCh6MRjydbXmbk0M21FBf-7LRt4eof3fe_BNyC90pdIyCWDEWOgb5azxYgDF6NYSB0LdkL6TAgVaSl5j_QBWBrpRMgzMqiqLQAomag--X22rtnVpkTfVHTifchtaWqkC_Nlnf0xtfUlHe82Ptj6zdHCh8OqcXRMH31VY7DtrlXdvm7RiXEYDJ05s7Hlhr62ViuEd_9Jn0yZe0enFnc5fey0c3JamF2FF8c5JC_T2-XkPpo_3M0m43m05omqoxgVrmSqV-sVclOIJIfUoIaUK13olCeSr3NRSJ4ySAqJAhSg5AWoFROcs3hIrg9398F_NFjV2dY3oWxfZjFnQosEREfBgVoHX1UBi2wfrDPhO2OQdZGzNnLWRc6OkVvl6qBYRPzHGQBXgsd_N6B7AQ |
| CODEN | IEIMAO |
| Cites_doi | 10.1088/0031-9155/53/12/009 10.1097/00004728-198404000-00002 10.1137/120887679 10.1109/TMI.2010.2098036 10.1109/TNS.2011.2121093 10.1088/0031-9155/61/1/243 10.1504/IJMMNO.2013.055204 10.1109/NSSMIC.2015.7582117 10.1109/TMI.2013.2265886 10.1109/42.363108 10.1016/s0003-2670(00)82860-3 10.1109/TMI.2004.831224 10.3390/s22197374 10.1109/nssmic.2018.8824429 10.1016/j.zemedi.2022.04.005 10.1109/NSSMIC.2004.1466463 10.1016/B978-012744482-6.50023-5 10.1137/1.9781611977134 10.1088/0031-9155/57/21/6779 10.1109/TRPMS.2019.2937675 10.1109/TMI.1987.4307796 10.1097/00004728-198312000-00071 10.1109/TNS.2008.2007951 10.1016/j.compbiomed.2023.107502 10.1016/j.amc.2003.08.058 10.3390/psf2023009002 10.1109/42.700734 10.1007/0-387-34946-4_1 10.1088/1361-6560/abe65f 10.1117/3.831079.ch1 10.1088/1361-6560/aac8cd 10.1109/78.193196 10.1088/0031-9155/61/8/3127 10.1088/0031-9155/51/15/R01 10.1109/TMI.2003.817767 10.1109/23.819285 10.1118/1.4959551 10.1080/17415977.2021.2011863 10.1016/0168-583X(95)80085-9 10.3109/0284186X.2011.580001 10.1109/TMI.2003.812249 10.1109/42.52985 10.1007/978-3-642-45898-9_6 10.1109/ICIP.1996.560890 10.1103/PhysRev.21.483 10.1109/TIM.2022.3165275 10.1109/42.14509 10.1109/TMI.1987.4307826 10.5109/13440 10.1109/TRPMS.2019.2929423 10.1109/83.491321 10.1016/j.net.2023.06.035 10.1109/42.563662 10.1109/78.324732 10.1118/1.3528170 10.1007/978-3-319-91578-4 10.1364/JOSAA.14.002914 10.1109/42.370409 10.1007/978-3-030-85450-8 10.1088/1361-6560/ac73d2 10.1109/42.61759 10.1109/NSSMIC.2018.8824289 10.1109/23.873014 10.1002/mp.13123 10.1051/epjconf/202328806003 10.1038/s41598-017-02377-w 10.1088/1361-6560/ab280c 10.1016/j.nima.2007.01.171 10.1109/TCI.2020.3008782 10.1016/B978-012744482-6.50024-7 10.1109/TMI.1987.4307810 10.1109/TPAMI.1984.4767596 10.1364/AO.36.008352 10.1109/NSSMIC.1998.773871 10.1007/s10107-015-0892-3 10.1109/TMI.1982.4307558 10.1137/1.9781611974997 10.1109/TIP.2010.2058811 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2025.3569351 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 17 |
| ExternalDocumentID | 10_1109_TIM_2025_3569351 11002752 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: ANR RED-7D project and BPI PIA4 Dream-Scanner project |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c247t-3e7eb689bcbe2af54d08ae908279f982462cd5f628104f6e5070e62f07b152213 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502506800037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 07:36:51 EDT 2025 Sat Nov 29 07:52:22 EST 2025 Wed Aug 27 01:52:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-3e7eb689bcbe2af54d08ae908279f982462cd5f628104f6e5070e62f07b152213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6563-2135 0000-0003-3873-2795 0000-0002-3443-5390 |
| PQID | 3215954051 |
| PQPubID | 85462 |
| PageCount | 17 |
| ParticipantIDs | ieee_primary_11002752 proquest_journals_3215954051 crossref_primary_10_1109_TIM_2025_3569351 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Caffrey (ref74) 2019 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 Li (ref20) 2009 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref34 doi: 10.1088/0031-9155/53/12/009 – ident: ref55 doi: 10.1097/00004728-198404000-00002 – ident: ref57 doi: 10.1137/120887679 – ident: ref42 doi: 10.1109/TMI.2010.2098036 – ident: ref59 doi: 10.1109/TNS.2011.2121093 – ident: ref66 doi: 10.1088/0031-9155/61/1/243 – ident: ref58 doi: 10.1504/IJMMNO.2013.055204 – ident: ref73 doi: 10.1109/NSSMIC.2015.7582117 – ident: ref37 doi: 10.1109/TMI.2013.2265886 – ident: ref12 doi: 10.1109/42.363108 – ident: ref60 doi: 10.1016/s0003-2670(00)82860-3 – ident: ref26 doi: 10.1109/TMI.2004.831224 – ident: ref1 doi: 10.3390/s22197374 – ident: ref50 doi: 10.1109/nssmic.2018.8824429 – ident: ref44 doi: 10.1016/j.zemedi.2022.04.005 – ident: ref31 doi: 10.1109/NSSMIC.2004.1466463 – ident: ref3 doi: 10.1016/B978-012744482-6.50023-5 – ident: ref22 doi: 10.1137/1.9781611977134 – ident: ref36 doi: 10.1088/0031-9155/57/21/6779 – ident: ref43 doi: 10.1109/TRPMS.2019.2937675 – ident: ref10 doi: 10.1109/TMI.1987.4307796 – ident: ref78 doi: 10.1097/00004728-198312000-00071 – ident: ref65 doi: 10.1109/TNS.2008.2007951 – ident: ref70 doi: 10.1016/j.compbiomed.2023.107502 – ident: ref47 doi: 10.1016/j.amc.2003.08.058 – ident: ref46 doi: 10.3390/psf2023009002 – ident: ref9 doi: 10.1109/42.700734 – year: 2019 ident: ref74 article-title: The development and evaluation of a Compton camera for imaging spent fuel rod assemblies – ident: ref75 doi: 10.1007/0-387-34946-4_1 – volume-title: Markov Random Field Modeling in Image Analysis year: 2009 ident: ref20 – ident: ref14 doi: 10.1088/1361-6560/abe65f – ident: ref28 doi: 10.1117/3.831079.ch1 – ident: ref71 doi: 10.1088/1361-6560/aac8cd – ident: ref29 doi: 10.1109/78.193196 – ident: ref77 doi: 10.1088/0031-9155/61/8/3127 – ident: ref21 doi: 10.1088/0031-9155/51/15/R01 – ident: ref72 doi: 10.1109/TMI.2003.817767 – ident: ref63 doi: 10.1109/23.819285 – ident: ref38 doi: 10.1118/1.4959551 – ident: ref53 doi: 10.1080/17415977.2021.2011863 – ident: ref2 doi: 10.1016/0168-583X(95)80085-9 – ident: ref6 doi: 10.3109/0284186X.2011.580001 – ident: ref18 doi: 10.1109/TMI.2003.812249 – ident: ref23 doi: 10.1109/42.52985 – ident: ref80 doi: 10.1007/978-3-642-45898-9_6 – ident: ref76 doi: 10.1109/ICIP.1996.560890 – ident: ref79 doi: 10.1103/PhysRev.21.483 – ident: ref32 doi: 10.1109/TIM.2022.3165275 – ident: ref11 doi: 10.1109/42.14509 – ident: ref16 doi: 10.1109/TMI.1987.4307826 – ident: ref7 doi: 10.5109/13440 – ident: ref41 doi: 10.1109/TRPMS.2019.2929423 – ident: ref27 doi: 10.1109/83.491321 – ident: ref40 doi: 10.1016/j.net.2023.06.035 – ident: ref30 doi: 10.1109/42.563662 – ident: ref13 doi: 10.1109/78.324732 – ident: ref35 doi: 10.1118/1.3528170 – ident: ref49 doi: 10.1007/978-3-319-91578-4 – ident: ref52 doi: 10.1364/JOSAA.14.002914 – ident: ref25 doi: 10.1109/42.370409 – ident: ref48 doi: 10.1007/978-3-030-85450-8 – ident: ref69 doi: 10.1088/1361-6560/ac73d2 – ident: ref24 doi: 10.1109/42.61759 – ident: ref68 doi: 10.1109/NSSMIC.2018.8824289 – ident: ref5 doi: 10.1109/23.873014 – ident: ref15 doi: 10.1002/mp.13123 – ident: ref61 doi: 10.1051/epjconf/202328806003 – ident: ref67 doi: 10.1038/s41598-017-02377-w – ident: ref39 doi: 10.1088/1361-6560/ab280c – ident: ref64 doi: 10.1016/j.nima.2007.01.171 – ident: ref62 doi: 10.1109/TCI.2020.3008782 – ident: ref4 doi: 10.1016/B978-012744482-6.50024-7 – ident: ref17 doi: 10.1109/TMI.1987.4307810 – ident: ref19 doi: 10.1109/TPAMI.1984.4767596 – ident: ref51 doi: 10.1364/AO.36.008352 – ident: ref54 doi: 10.1109/NSSMIC.1998.773871 – ident: ref45 doi: 10.1007/s10107-015-0892-3 – ident: ref8 doi: 10.1109/TMI.1982.4307558 – ident: ref56 doi: 10.1137/1.9781611974997 – ident: ref33 doi: 10.1109/TIP.2010.2058811 |
| SSID | ssj0007647 |
| Score | 2.4255908 |
| Snippet | It is widely acknowledged that maximum a posteriori (MAP) estimation, when combined with a Markov random field (MRF) prior, is an effective tool for Compton... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Algorithms Cameras Comparative studies Complexity theory Compton camera imaging Convergence Correlation Estimation Fields (mathematics) Image reconstruction Imaging Markov random field (MRF) Markov random fields Maximization maximum a posteriori (MAP) estimation Numerical methods Optimization real-world data reconstruction algorithm Reconstruction algorithms simultaneous coordinate maximization (SCM) |
| Title | Simultaneous Coordinate Maximization Algorithm for Maximum A Posteriori Compton Camera Imaging With Markov Random Field Prior |
| URI | https://ieeexplore.ieee.org/document/11002752 https://www.proquest.com/docview/3215954051 |
| Volume | 74 |
| WOSCitedRecordID | wos001502506800037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdYBdI4DChFlHXIh104pE39EcfHqqKi0jpNUERvkRM7LNKSoDatdtn_zntOOkCIA7dIjp8i_-Ln33t-H4RcMrxZFEIG0kkeCMfDILZWB1IDf5BWcJ76OrNX6vo63mz0TZes7nNhnHM--MyN8dHf5ds626OrbILlzZiSoHFPlFJtstaj2lWRaAtkTmEHAy043kmGerJersASZHLMZaS5nP5xBvmmKn9pYn-8LF7854e9JGcdj6SzFvhX5Imr-uT5b9UF--SZj-7Mdq_Jw5cCAwdN5cDOp_MaDM6iApJJV-a-KLtMTDq7-15vi-a2pEBk26F9SWcU-_mCSBijqD2ALNK5QV8WXZa-xxH9BrMoZv3UB_rZVLYu6QIj4-gNThuQr4uP6_mnoOu7EGRMqCbgDhulxDrNUsdMLoUNY-OwN7rSuY6ZiFhmZR6xGGy5PHJAKUMXsTxUKbABNuVvSK-qK_eWUAOybMytMynAY4QODQdGpgwSn1jIIflwRCL50ZbXSLxZEuoEUEsQtaRDbUgGuPK_3usWfUhGR-ySbgPuEg5URiMbnb77x7RzcorSW3fKiPSa7d5dkKfZoSl22_f-3_oJYhPLhA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBUR74FFadaGAD71wSJv4kcTH1YpVV91dVXQRvUVO7JRIJKn2UfXCf2fGyfIQ4sAtkmMn8mePv_G8AE45WRalVIFySgTSiTBIrdWB0sgflJVC5D7P7DSZz9ObG33VB6v7WBjnnHc-c2f06G35ti02dFV2TunNeKJQ4j5SUvKoC9f6KXiTWHYpMiPcw0gMtlbJUJ8vJjPUBbk6EyrWQkV_nEK-rMpfstgfMOPn__lrL-BZzyTZsIP-Jey45gD2f8sveABPvH9nsXoF368rch00jUNNn41aVDmrBmkmm5mHqu5jMdnw2227rNZfa4ZUtmva1GzIqKIvDoltjOQH0kU2MnSbxSa1r3LEvmAvRnE_7T37ZBrb1mxMvnHsirodwufxx8XoIugrLwQFl8k6EI5KpaQ6L3LHTamkDVPjqDp6okudchnzwqoy5ilqc2XskFSGLuZlmOTIB3gkjmC3aRt3DMzgWDYV1pkc4TFSh0YgJ0sMUZ9UqgF82CKR3XUJNjKvmIQ6Q9QyQi3rURvAIc38r_f6SR_AyRa7rN-Cq0wgmdHER6PX_-j2Hp5eLGbTbDqZX76BPfpSd7lyArvr5ca9hcfF_bpaLd_5dfYDIMLOyw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+Coordinate+Maximization+Algorithm+for+Maximum+A+Posteriori+Compton+Camera+Imaging+With+Markov+Random+Field+Prior&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Le%2C+Nhan&rft.au=Snoussi%2C+Hichem&rft.au=Iltis%2C+Alain&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=74&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1109%2FTIM.2025.3569351&rft.externalDocID=11002752 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |