Low-Complexity Chase Decoding of Hermitian Codes With Improved Interpolation and Root-Finding

This paper proposes the low-complexity Chase (LCC) decoding for Hermitian codes, which is facilitated by both the improved interpolation and root-finding. By identifying <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula> unreliable receive...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications Vol. 73; no. 8; pp. 5509 - 5522
Main Authors: Liang, Jiwei, Zhao, Jianguo, Chen, Li
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0090-6778, 1558-0857
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes the low-complexity Chase (LCC) decoding for Hermitian codes, which is facilitated by both the improved interpolation and root-finding. By identifying <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula> unreliable received symbols, <inline-formula> <tex-math notation="LaTeX">2^{\eta } </tex-math></inline-formula> test-vectors are formulated, each of which is decoded by the interpolation based Guruswami-Sudan (GS) algorithm. To reduce both the interpolation complexity and latency, the re-encoding transform (ReT) is introduced through defining the Lagrange interpolation polynomials over the Hermitian function fields. The interpolation polynomial is further computed through module basis reduction (BR) that yields the Gröbner basis that contains the desired polynomial. The BR interpolation exhibits a greater parallelism than the conventional Kötter's interpolation. Moreover, the <inline-formula> <tex-math notation="LaTeX">2^{\eta } </tex-math></inline-formula> root-finding processes are facilitated by estimating the codewords directly from the interpolation outcomes. It eliminates the re-encoding computation for identifying the most likely candidate from the decoding output list. It is also shown that the average LCC decoding complexity can be further reduced by both assessing the re-encoding outcome and decoding the test-vectors progressively. They can achieve an early decoding termination once a codeword that satisfies the maximum likelihood (ML) criterion is found. Our simulation results demonstrate that the decoding complexity and latency can be significantly reduced over the existing decoding algorithms.
AbstractList This paper proposes the low-complexity Chase (LCC) decoding for Hermitian codes, which is facilitated by both the improved interpolation and root-finding. By identifying <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula> unreliable received symbols, <inline-formula> <tex-math notation="LaTeX">2^{\eta } </tex-math></inline-formula> test-vectors are formulated, each of which is decoded by the interpolation based Guruswami-Sudan (GS) algorithm. To reduce both the interpolation complexity and latency, the re-encoding transform (ReT) is introduced through defining the Lagrange interpolation polynomials over the Hermitian function fields. The interpolation polynomial is further computed through module basis reduction (BR) that yields the Gröbner basis that contains the desired polynomial. The BR interpolation exhibits a greater parallelism than the conventional Kötter's interpolation. Moreover, the <inline-formula> <tex-math notation="LaTeX">2^{\eta } </tex-math></inline-formula> root-finding processes are facilitated by estimating the codewords directly from the interpolation outcomes. It eliminates the re-encoding computation for identifying the most likely candidate from the decoding output list. It is also shown that the average LCC decoding complexity can be further reduced by both assessing the re-encoding outcome and decoding the test-vectors progressively. They can achieve an early decoding termination once a codeword that satisfies the maximum likelihood (ML) criterion is found. Our simulation results demonstrate that the decoding complexity and latency can be significantly reduced over the existing decoding algorithms.
This paper proposes the low-complexity Chase (LCC) decoding for Hermitian codes, which is facilitated by both the improved interpolation and root-finding. By identifying [Formula Omitted] unreliable received symbols, [Formula Omitted] test-vectors are formulated, each of which is decoded by the interpolation based Guruswami-Sudan (GS) algorithm. To reduce both the interpolation complexity and latency, the re-encoding transform (ReT) is introduced through defining the Lagrange interpolation polynomials over the Hermitian function fields. The interpolation polynomial is further computed through module basis reduction (BR) that yields the Gröbner basis that contains the desired polynomial. The BR interpolation exhibits a greater parallelism than the conventional Kötter’s interpolation. Moreover, the [Formula Omitted] root-finding processes are facilitated by estimating the codewords directly from the interpolation outcomes. It eliminates the re-encoding computation for identifying the most likely candidate from the decoding output list. It is also shown that the average LCC decoding complexity can be further reduced by both assessing the re-encoding outcome and decoding the test-vectors progressively. They can achieve an early decoding termination once a codeword that satisfies the maximum likelihood (ML) criterion is found. Our simulation results demonstrate that the decoding complexity and latency can be significantly reduced over the existing decoding algorithms.
Author Zhao, Jianguo
Chen, Li
Liang, Jiwei
Author_xml – sequence: 1
  givenname: Jiwei
  surname: Liang
  fullname: Liang, Jiwei
  email: liangjw59@mail2.sysu.edu.cn
  organization: School of System Science and Engineering, Sun Yat-sen University, Guangzhou, China
– sequence: 2
  givenname: Jianguo
  surname: Zhao
  fullname: Zhao, Jianguo
  email: zhaojg5@mail2.sysu.edu.cn
  organization: School of System Science and Engineering, Sun Yat-sen University, Guangzhou, China
– sequence: 3
  givenname: Li
  orcidid: 0000-0002-1725-1901
  surname: Chen
  fullname: Chen, Li
  email: chenli55@mail.sysu.edu.cn
  organization: School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
BookMark eNpNkMtKw0AUhgepYFt9AXEx4Dr1zC2XpURrCy0FqbiSIU1O7JRmpmZStW_v1LoQDpzN_53LNyA96ywScs1gxBhkd8t8MZ-POHA5EopLEOqM9JlSaQSpSnqkD5BBFCdJekEG3m8AIIREn7zN3FeUu2a3xW_THWi-LjzSByxdZew7dTWdYNuYzhSW5q5CT19Nt6bTZte6T6zo1HbY7ty26IyztLAVfXaui8bGHvlLcl4XW49Xf31IXsaPy3wSzRZP0_x-FpVcJl0kMGarpFIMKqi5KFFUSslY1jIDVFAhIK4ynqQ1lEWtQql6JUSRMUCO4ZEhuT3NDVd97NF3euP2rQ0rteAyVjEEFyHFT6mydd63WOtda5qiPWgG-qhR_2rUR436T2OAbk6QQcR_QMpSxaT4AVCrcKM
CODEN IECMBT
Cites_doi 10.1109/TIT.1969.1054260
10.1109/TIT.2012.2188274
10.1109/TIT.2022.3188843
10.1109/18.312155
10.1109/TCOMM.2009.08.070302
10.1109/18.476240
10.1109/18.720550
10.1109/TCOMM.2017.2786667
10.1016/j.jsc.2007.12.004
10.1109/TIT.2010.2096034
10.1109/TIT.2021.3109447
10.1016/j.jsc.2008.01.002
10.1049/iet-com.2015.0873
10.1007/978-3-540-76878-4
10.1109/ICC.2007.145
10.1109/18.945273
10.1109/tit.2025.3550750
10.1109/TIT.2015.2424415
10.1109/TIT.2003.819332
10.1109/GCWkshps58843.2023.10464872
10.1016/S0747-7171(02)00139-6
10.1109/ISCAS.2009.5118353
10.1109/18.782097
10.1007/3-540-46796-3_26
10.1109/18.817522
10.1109/TIT.2010.2046208
10.1109/TIT.2020.3042248
10.1109/TCOMM.2020.3011991
10.1109/TIT.2009.2039073
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2024.3524035
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 5522
ExternalDocumentID 10_1109_TCOMM_2024_3524035
10818514
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Guangdong Province
  grantid: 2024A1515010213
  funderid: 10.13039/501100003453
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 62071498
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c247t-3e61b7d510d0f23ce3d55464f490e50de0eeb9278f0caf5af55fb33a910e2e403
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001551629100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0090-6778
IngestDate Sat Nov 01 14:55:13 EDT 2025
Sat Nov 29 07:36:34 EST 2025
Wed Aug 27 07:40:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-3e61b7d510d0f23ce3d55464f490e50de0eeb9278f0caf5af55fb33a910e2e403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1725-1901
PQID 3246560155
PQPubID 85472
PageCount 14
ParticipantIDs crossref_primary_10_1109_TCOMM_2024_3524035
ieee_primary_10818514
proquest_journals_3246560155
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Kötter (ref8) 1996
ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref17
ref16
ref19
ref18
Nielsen (ref29) 2001
Goppa (ref1) 1977; 13
Chen (ref21)
ref24
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1109/TIT.1969.1054260
– ident: ref25
  doi: 10.1109/TIT.2012.2188274
– ident: ref12
  doi: 10.1109/TIT.2022.3188843
– ident: ref24
  doi: 10.1109/18.312155
– ident: ref17
  doi: 10.1109/TCOMM.2009.08.070302
– ident: ref3
  doi: 10.1109/18.476240
– ident: ref28
  doi: 10.1109/18.720550
– ident: ref20
  doi: 10.1109/TCOMM.2017.2786667
– ident: ref10
  doi: 10.1016/j.jsc.2007.12.004
– ident: ref14
  doi: 10.1109/TIT.2010.2096034
– ident: ref15
  doi: 10.1109/TIT.2021.3109447
– ident: ref9
  doi: 10.1016/j.jsc.2008.01.002
– ident: ref26
  doi: 10.1049/iet-com.2015.0873
– ident: ref30
  doi: 10.1007/978-3-540-76878-4
– ident: ref7
  doi: 10.1109/ICC.2007.145
– ident: ref6
  doi: 10.1109/18.945273
– year: 1996
  ident: ref8
  article-title: On algebraic decoding of algebraic-geometric and cyclic codes
– ident: ref13
  doi: 10.1109/tit.2025.3550750
– ident: ref11
  doi: 10.1109/TIT.2015.2424415
– volume: 13
  start-page: 33
  issue: 1
  year: 1977
  ident: ref1
  article-title: Codes associated with divisors
  publication-title: Problemy Peredachi Informatsii
– ident: ref16
  doi: 10.1109/TIT.2003.819332
– ident: ref23
  doi: 10.1109/GCWkshps58843.2023.10464872
– ident: ref32
  doi: 10.1016/S0747-7171(02)00139-6
– ident: ref22
  doi: 10.1109/ISCAS.2009.5118353
– ident: ref4
  doi: 10.1109/18.782097
– ident: ref31
  doi: 10.1007/3-540-46796-3_26
– start-page: 180
  volume-title: Proc. IEEE Int. Symp. Inf. Theory (ISIT)
  ident: ref21
  article-title: Algebraic chase decoding of elliptic codes through computing the Gröbner basis
– year: 2001
  ident: ref29
  article-title: List decoding of linear block codes
– ident: ref5
  doi: 10.1109/18.817522
– ident: ref18
  doi: 10.1109/TIT.2010.2046208
– ident: ref33
  doi: 10.1109/TIT.2020.3042248
– ident: ref27
  doi: 10.1109/TCOMM.2020.3011991
– ident: ref19
  doi: 10.1109/TIT.2009.2039073
SSID ssj0004033
Score 2.485377
Snippet This paper proposes the low-complexity Chase (LCC) decoding for Hermitian codes, which is facilitated by both the improved interpolation and root-finding. By...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 5509
SubjectTerms Algorithms
Basis reduction
Codes
Complexity
Complexity theory
Decoding
early termination
Encoding
fast root-finding
Galois fields
Hermitian codes
Interpolation
Maximum likelihood decoding
Polynomials
re-encoding transform
Reliability
Symbols
Transforms
Title Low-Complexity Chase Decoding of Hermitian Codes With Improved Interpolation and Root-Finding
URI https://ieeexplore.ieee.org/document/10818514
https://www.proquest.com/docview/3246560155
Volume 73
WOSCitedRecordID wos001551629100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0857
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004033
  issn: 0090-6778
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20eNCDnxWrVfbgTbZus0k2e5Ro6cFWkYq9SEizs7SXRNpU8d87u0mxIh6EHALZQJjJZN5s3psh5FJEEfgqBKa5lzHf-ClD1BqyAKGu6oKQ3HA3bEIOh9F4rB5rsbrTwgCAI59Bx566f_m6yJZ2qwwj3KYXO7Z6U0pZibW-RZBc1C0nLZ9dRiuFDFfXo_hhMMBa0PM7iDdwYfAjC7mxKr--xS7B9Pb--Wj7ZLdGkvSmcv0B2YD8kOys9Rc8Iq_3xQezEW-7XpafNJ5izqK3WHHajEULQ_uWC2ODnMaFhgV9mZVTWm00gKYVI7Go6HI0zTV9KoqS9WZOCtMkz727Udxn9TwFlnm-LJmAsDuRGqNQc-OJDIS2HDV0kOIQcA0cYKI8GRmepSbAIzATIVJEFOABmu2YNPIihxNCM2WE9o3GAlf5OkyVykIeGQxn6Ud4sUWuVvZN3qq2GYkrN7hKnDcS642k9kaLNK1F11ZWxmyR9sonSR1aiwQRoG0YhDjo9I_bzsi2Z6f0OppemzTK-RLOyVb2Xs4W8wv31nwBuI6_Cg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF1EBfXgZ8Vq1T14k63b7OZjj1ItFdsqUrEXCWl2lvbSSJsq_ntnNylWxIOQQyAbCDOZzJvNezOEXIgoAqkCYJp7KZNGJgxRa8B8hLqqASLkhrthE2GvFw0G6rEUqzstDAA48hnU7an7l6-zdG63yjDCbXqxY6vXfCm9RiHX-pZBclE2nbSM9jBaaGS4uuo3H7pdrAY9WUfEgQv9H3nIDVb59TV2Kaa188-H2yXbJZak14Xz98gKTPbJ1lKHwQPy2sk-mI152_cy_6TNEWYteoM1p81ZNDO0bdkwNsxpM9Mwoy_jfESLrQbQtOAkZgVhjiYTTZ-yLGetsRPDVMhz67bfbLNyogJLPRnmTEDQGIYa41Bz44kUhLYsNXSR4uBzDRxgqLwwMjxNjI-Hb4ZCJIgpwAM02yFZnWQTOCI0VUZoaTSWuErqIFEqDXhkMKBDGeHFKrlc2Dd-KxpnxK7g4Cp23oitN-LSG1VSsRZdWlkYs0pqC5_EZXDNYsSAtmUQIqHjP247JxvtfrcTd-569ydk07Mzex1pr0ZW8-kcTsl6-p6PZ9Mz9wZ9AdQ-wlE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Complexity+Chase+Decoding+of+Hermitian+Codes+With+Improved+Interpolation+and+Root-Finding&rft.jtitle=IEEE+transactions+on+communications&rft.au=Liang%2C+Jiwei&rft.au=Zhao%2C+Jianguo&rft.au=Chen%2C+Li&rft.date=2025-08-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=73&rft.issue=8&rft.spage=5509&rft.epage=5522&rft_id=info:doi/10.1109%2FTCOMM.2024.3524035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2024_3524035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon