Path planning for spot welding robots based on improved ant colony algorithm
A welding path can be planned effectively for spot welding robots using the ant colony algorithm, but the initial parameters of the ant colony algorithm are usually selected through human experience, resulting in an unreasonable planned path. This paper combines the ant colony algorithm with the par...
Gespeichert in:
| Veröffentlicht in: | Robotica Jg. 41; H. 3; S. 926 - 938 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cambridge, UK
Cambridge University Press
01.03.2023
|
| Schlagworte: | |
| ISSN: | 0263-5747, 1469-8668 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A welding path can be planned effectively for spot welding robots using the ant colony algorithm, but the initial parameters of the ant colony algorithm are usually selected through human experience, resulting in an unreasonable planned path. This paper combines the ant colony algorithm with the particle swarm algorithm and uses the particle swarm algorithm to train the initial parameters of the ant colony algorithm to plan an optimal path. Firstly, a mathematical model for spot welding path planning is established using the ant colony algorithm. Then, the particle swarm algorithm is introduced into the ant colony algorithm to find the optimal combination of parameters by treating the initial parameters
$\alpha$
and
$\beta$
of the ant colony algorithm and as two-dimensional coordinates in the particle swarm algorithm. Finally, the simulation analysis was carried out using MATLAB to obtain the paths of the improved ant colony algorithm for six different sets of parameters with an average path length of 10,357.7509 mm, but the average path length obtained by conventional algorithm was 10,830.8394 mm. Convergence analysis of the improved ant colony algorithm showed that the average number of iterations was 17. Therefore, the improved ant colony algorithm has higher solution quality and converges faster. |
|---|---|
| AbstractList | A welding path can be planned effectively for spot welding robots using the ant colony algorithm, but the initial parameters of the ant colony algorithm are usually selected through human experience, resulting in an unreasonable planned path. This paper combines the ant colony algorithm with the particle swarm algorithm and uses the particle swarm algorithm to train the initial parameters of the ant colony algorithm to plan an optimal path. Firstly, a mathematical model for spot welding path planning is established using the ant colony algorithm. Then, the particle swarm algorithm is introduced into the ant colony algorithm to find the optimal combination of parameters by treating the initial parameters $\alpha$ and $\beta$ of the ant colony algorithm and as two-dimensional coordinates in the particle swarm algorithm. Finally, the simulation analysis was carried out using MATLAB to obtain the paths of the improved ant colony algorithm for six different sets of parameters with an average path length of 10,357.7509 mm, but the average path length obtained by conventional algorithm was 10,830.8394 mm. Convergence analysis of the improved ant colony algorithm showed that the average number of iterations was 17. Therefore, the improved ant colony algorithm has higher solution quality and converges faster. A welding path can be planned effectively for spot welding robots using the ant colony algorithm, but the initial parameters of the ant colony algorithm are usually selected through human experience, resulting in an unreasonable planned path. This paper combines the ant colony algorithm with the particle swarm algorithm and uses the particle swarm algorithm to train the initial parameters of the ant colony algorithm to plan an optimal path. Firstly, a mathematical model for spot welding path planning is established using the ant colony algorithm. Then, the particle swarm algorithm is introduced into the ant colony algorithm to find the optimal combination of parameters by treating the initial parameters $\alpha$ and $\beta$ of the ant colony algorithm and as two-dimensional coordinates in the particle swarm algorithm. Finally, the simulation analysis was carried out using MATLAB to obtain the paths of the improved ant colony algorithm for six different sets of parameters with an average path length of 10,357.7509 mm, but the average path length obtained by conventional algorithm was 10,830.8394 mm. Convergence analysis of the improved ant colony algorithm showed that the average number of iterations was 17. Therefore, the improved ant colony algorithm has higher solution quality and converges faster. |
| Author | Zhang, Zhuo Ouyang, Jie Tan, Yuesheng Lao, Yinglun Wen, Pengju |
| Author_xml | – sequence: 1 givenname: Yuesheng surname: Tan fullname: Tan, Yuesheng email: tanyuesheng@163.com organization: School of Technology, Beijing Forestry University, Beijing 100083, China – sequence: 2 givenname: Jie orcidid: 0000-0001-5776-0885 surname: Ouyang fullname: Ouyang, Jie organization: School of Technology, Beijing Forestry University, Beijing 100083, China – sequence: 3 givenname: Zhuo surname: Zhang fullname: Zhang, Zhuo organization: School of Technology, Beijing Forestry University, Beijing 100083, China – sequence: 4 givenname: Yinglun surname: Lao fullname: Lao, Yinglun organization: School of Technology, Beijing Forestry University, Beijing 100083, China – sequence: 5 givenname: Pengju surname: Wen fullname: Wen, Pengju organization: School of Technology, Beijing Forestry University, Beijing 100083, China |
| BookMark | eNp9kN9LwzAQx4NMcJv-Ab4FfK4madO0jzL8BQMFFXwr1zTdMtqkJpmy_96UDQRFH4477r6fuy83QxNjjULonJJLSqi4eiYsT7nIBGOEUJq9HaEpzfIyKfK8mKDpOE7G-Qmaeb-JmpRmYoqWTxDWeOjAGG1WuLUO-8EG_Km6Zmw4W9vgcQ1eNdgarPvB2Y9YgwlY2s6aHYZuZZ0O6_4UHbfQeXV2yHP0envzsrhPlo93D4vrZSJZJkLCeN5y1ZSFJEUMySRtSsVqKJpWiBoUKWOjTnNBBZQtbwrecsioTAG4TGk6Rxf7vdHL-1b5UG3s1pl4smJCZIQURPCoonuVdNZ7p9pqcLoHt6soqcanVb-eFhnxg5E6QNDWBAe6-5dMDyT0tdPNSn2b-pv6AlXVgeI |
| CitedBy_id | crossref_primary_10_1016_j_sna_2024_115547 crossref_primary_10_4018_IJITSA_342613 crossref_primary_10_1016_j_rcim_2024_102791 crossref_primary_10_1109_ACCESS_2023_3290473 crossref_primary_10_3390_axioms12060525 crossref_primary_10_3390_a15120477 crossref_primary_10_1038_s41598_023_43783_7 crossref_primary_10_2166_wst_2023_410 crossref_primary_10_1007_s10586_025_05516_5 crossref_primary_10_1007_s13369_023_08541_x crossref_primary_10_1016_j_asoc_2024_112433 crossref_primary_10_1109_ACCESS_2023_3310250 crossref_primary_10_1109_TIV_2024_3429500 crossref_primary_10_1016_j_engappai_2025_111890 crossref_primary_10_1017_S0263574725000037 crossref_primary_10_1108_IR_12_2024_0568 crossref_primary_10_3390_biomimetics7040210 crossref_primary_10_1017_S0263574724001930 crossref_primary_10_1016_j_matpr_2023_06_420 |
| Cites_doi | 10.1002/rob.1036 10.1016/j.plrev.2005.10.001 10.1177/1729881420936154 10.1016/j.asoc.2020.106443 10.1134/S1064230710010053 |
| ContentType | Journal Article |
| Copyright | The Author(s), 2022. Published by Cambridge University Press |
| Copyright_xml | – notice: The Author(s), 2022. Published by Cambridge University Press |
| DBID | AAYXX CITATION 3V. 7SC 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO F28 FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1017/S026357472200114X |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1469-8668 |
| EndPage | 938 |
| ExternalDocumentID | 10_1017_S026357472200114X |
| GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N -~X .DC .FH 09C 09E 0E1 0R~ 123 29P 3V. 4.4 5VS 6~7 74X 74Y 7~V 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABXAU ABZCX ACBMC ACCHT ACETC ACGFS ACIMK ACIWK ACMRT ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AEYYC AFFNX AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD F5P GNUQQ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KC5 KCGVB KFECR L6V L98 LHUNA LW7 M-V M0N M7S M7~ M8. MVM NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S6- S6U SAAAG T9M TN5 UT1 VOH WFFJZ WH7 WQ3 WXU WXY WYP ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 AAKNA AAYXX ABGDZ ABVKB ABVZP ABXHF ACDLN ACEJA ADMLS AFFHD AFZFC AKMAY ANOYL CITATION PHGZM PHGZT PQGLB 7SC 7SP 7TB 7XB 8AL 8FD 8FK F28 FR3 JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c247t-256f5ed98c088c0c2c1d9e2ba8df77bae091d9b36717a9f5d85f5a41c3aa5c313 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000840548900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-5747 |
| IngestDate | Sat Sep 06 14:41:36 EDT 2025 Tue Nov 18 20:49:21 EST 2025 Sat Nov 29 02:10:23 EST 2025 Wed Mar 13 05:48:57 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | particle swarm algorithm spot welding robot path planning ant colony algorithm |
| Language | English |
| License | https://www.cambridge.org/core/terms |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-256f5ed98c088c0c2c1d9e2ba8df77bae091d9b36717a9f5d85f5a41c3aa5c313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5776-0885 |
| PQID | 2774008075 |
| PQPubID | 37292 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2774008075 crossref_primary_10_1017_S026357472200114X crossref_citationtrail_10_1017_S026357472200114X cambridge_journals_10_1017_S026357472200114X |
| PublicationCentury | 2000 |
| PublicationDate | 20230300 2023-03-00 20230301 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 20230300 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge, UK |
| PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
| PublicationTitle | Robotica |
| PublicationTitleAlternate | Robotica |
| PublicationYear | 2023 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| References | 2021; 9 2004; 20 2015; 36 2010; 49 2021; 45 2019; 50 2019; 42 2019; 31 2006; 13 2020; 94 2022; 40 2020; 17 2020; 16 2014; 35 2008; 30 2001; 18 2005; 2 1998; 98 2019; b 2018; 26 Ma (S026357472200114X_ref9) 2021; 45 Zhuang (S026357472200114X_ref1) 2004; 20 S026357472200114X_ref20 Wang (S026357472200114X_ref12) 2008; 30 S026357472200114X_ref6 Jia (S026357472200114X_ref17) 2020; 16 S026357472200114X_ref22 Pei (S026357472200114X_ref7) 2020; 94 Lavalle (S026357472200114X_ref4) 1998; 98 S026357472200114X_ref11 Liang (S026357472200114X_ref3) 2019; 42 Zhu (S026357472200114X_ref5) 2014; 35 Min (S026357472200114X_ref21) 2006; 13 Ling (S026357472200114X_ref13) 2015; 36 Xu (S026357472200114X_ref16) 2019; 31 Chen (S026357472200114X_ref14) 2019; b Zhang (S026357472200114X_ref10) 2022; 40 Liu (S026357472200114X_ref8) 2021; 9 Zhang (S026357472200114X_ref15) 2019; 50 Zhu (S026357472200114X_ref2) 2018; 26 S026357472200114X_ref18 S026357472200114X_ref19 |
| References_xml | – volume: 42 issue: 11 year: 2019 article-title: Path planning of indoor mobile robot based on improved ant colony algorithm publication-title: Electron. Meas. Technol – volume: 18 start-page: 445 issue: 8 year: 2001 end-page: 461 article-title: Point-to-point and multi-goal path planning for industrial robots publication-title: J. Intell. Robot Syst – volume: 45 start-page: 77 issue: 06 year: 2021 end-page: 84 article-title: Improved artificial potential field method for dual-manipulator path planning algorithm publication-title: J. Mech. Trans – volume: 50 start-page: 11 issue: 5 year: 2019 article-title: Ant colony optimization with improved potential field heuristic for robot path planning publication-title: Trans. Chin. Soc. Agric. Mach – volume: 30 start-page: 16 issue: 5 year: 2008 end-page: 17 article-title: A study on BIW welding robot path planning based on ant colony algorithm publication-title: Manufact. Automat – volume: b start-page: 1 issue: b year: 2019 end-page: 10 article-title: Mobile robot path planning using ant colony algorithm and improved potential field method publication-title: Comput. Intel. Neurosci. – volume: 35 start-page: 2482 issue: 11 year: 2014 end-page: 2931 article-title: Welding spot detection path planning method based on a novel particle swarm algorithm publication-title: Chin J. Sci. Instrum. – volume: 9 start-page: 32 year: 2021 end-page: 38 article-title: Global dynamic path planning fusion algorithm combining jump-A* algorithm and dynamic window approach publication-title: IEEE Access – volume: 17 start-page: 1 issue: 5 year: 2020 end-page: 19 article-title: Multi-robot path planning using an improved self-adaptive particle swarm optimization publication-title: Int. J. Adv Robot. Syst – volume: 31 start-page: 531 issue: 10 year: 2019 end-page: 533 article-title: Path planning of mobile robot based on improved adaptive ant colony algorithm publication-title: J. Electron. Meas. Instrument – volume: 94 start-page: 106443 year: 2020 article-title: A parallel compact cuckoo search algorithm for three-dimensional path planning publication-title: Appl. Soft. Comput. – volume: 98 start-page: 1 issue: 11 year: 1998 end-page: 4 article-title: Rapidly-exploring random trees: a new tool for path planning publication-title: Computer Science Dept – volume: 40 start-page: 1 issue: 04 year: 2022 end-page: 18 article-title: Constrained sampling method based RRT algorithm for manipulator motion planning publication-title: Comput. Integr. Manuf. – volume: 16 issue: 6 year: 2020 article-title: Research on evacuation path planning in single-story building fire based on genetic-ant colony algorithm publication-title: J. Saf. Sci. Technol – volume: 20 start-page: 6 issue: 3 year: 2004 article-title: Research on path planning and related algorithms for robots publication-title: Bull. Sci. Technol – volume: 13 start-page: 402 issue: 4 year: 2006 end-page: 405 article-title: Solving traveling salesman problem by an ACO and PSO based hybrid algorithm publication-title: J. Jilin Univ. (Inform. Sci. Edn.) – volume: 26 start-page: 6 issue: 10 year: 2018 article-title: Path planning of manipulator to avoid obstacle based on improved artificial potential field method publication-title: Comput. Meas. Cont – volume: 36 start-page: 5 issue: 01 year: 2015 end-page: 9 article-title: Application of ant colony algorithm in welding path planning of BIW publication-title: Trans. China Weld. Inst – volume: 49 start-page: 30 issue: 1 year: 2010 end-page: 43 article-title: Ant colony optimization algorithms for solving transportation problems publication-title: J. Comput. Sys. Sc. Int – volume: 2 start-page: 353 issue: 4 year: 2005 end-page: 373 article-title: Ant colony optimization: introduction and recent trends publication-title: Phys. Life. Rev – volume: 50 start-page: 11 year: 2019 ident: S026357472200114X_ref15 article-title: Ant colony optimization with improved potential field heuristic for robot path planning publication-title: Trans. Chin. Soc. Agric. Mach – ident: S026357472200114X_ref11 – ident: S026357472200114X_ref6 doi: 10.1002/rob.1036 – volume: 13 start-page: 402 year: 2006 ident: S026357472200114X_ref21 article-title: Solving traveling salesman problem by an ACO and PSO based hybrid algorithm publication-title: J. Jilin Univ. (Inform. Sci. Edn.) – volume: 45 start-page: 77 year: 2021 ident: S026357472200114X_ref9 article-title: Improved artificial potential field method for dual-manipulator path planning algorithm publication-title: J. Mech. Trans – volume: 30 start-page: 16 year: 2008 ident: S026357472200114X_ref12 article-title: A study on BIW welding robot path planning based on ant colony algorithm publication-title: Manufact. Automat – volume: 26 start-page: 6 year: 2018 ident: S026357472200114X_ref2 article-title: Path planning of manipulator to avoid obstacle based on improved artificial potential field method publication-title: Comput. Meas. Cont – ident: S026357472200114X_ref19 doi: 10.1016/j.plrev.2005.10.001 – volume: 16 year: 2020 ident: S026357472200114X_ref17 article-title: Research on evacuation path planning in single-story building fire based on genetic-ant colony algorithm publication-title: J. Saf. Sci. Technol – volume: 35 start-page: 2482 year: 2014 ident: S026357472200114X_ref5 article-title: Welding spot detection path planning method based on a novel particle swarm algorithm publication-title: Chin J. Sci. Instrum. – ident: S026357472200114X_ref22 doi: 10.1177/1729881420936154 – volume: 36 start-page: 5 year: 2015 ident: S026357472200114X_ref13 article-title: Application of ant colony algorithm in welding path planning of BIW publication-title: Trans. China Weld. Inst – volume: 9 start-page: 32 year: 2021 ident: S026357472200114X_ref8 article-title: Global dynamic path planning fusion algorithm combining jump-A* algorithm and dynamic window approach publication-title: IEEE Access – volume: 40 start-page: 1 year: 2022 ident: S026357472200114X_ref10 article-title: Constrained sampling method based RRT algorithm for manipulator motion planning publication-title: Comput. Integr. Manuf. – ident: S026357472200114X_ref18 – volume: b start-page: 1 year: 2019 ident: S026357472200114X_ref14 article-title: Mobile robot path planning using ant colony algorithm and improved potential field method publication-title: Comput. Intel. Neurosci. – volume: 42 year: 2019 ident: S026357472200114X_ref3 article-title: Path planning of indoor mobile robot based on improved ant colony algorithm publication-title: Electron. Meas. Technol – volume: 20 start-page: 6 year: 2004 ident: S026357472200114X_ref1 article-title: Research on path planning and related algorithms for robots publication-title: Bull. Sci. Technol – volume: 94 start-page: 106443 year: 2020 ident: S026357472200114X_ref7 article-title: A parallel compact cuckoo search algorithm for three-dimensional path planning publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2020.106443 – volume: 31 start-page: 531 year: 2019 ident: S026357472200114X_ref16 article-title: Path planning of mobile robot based on improved adaptive ant colony algorithm publication-title: J. Electron. Meas. Instrument – ident: S026357472200114X_ref20 doi: 10.1134/S1064230710010053 – volume: 98 start-page: 1 year: 1998 ident: S026357472200114X_ref4 article-title: Rapidly-exploring random trees: a new tool for path planning publication-title: Computer Science Dept |
| SSID | ssj0013147 |
| Score | 2.4700747 |
| Snippet | A welding path can be planned effectively for spot welding robots using the ant colony algorithm, but the initial parameters of the ant colony algorithm are... |
| SourceID | proquest crossref cambridge |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 926 |
| SubjectTerms | Algorithms Ant colony optimization Applications of reconfigurable mechanisms and reconfigurable robots Convergence Efficiency Genetic algorithms Heuristic Parameters Path planning Pheromones Planning Robots Simulation Spot welding |
| Title | Path planning for spot welding robots based on improved ant colony algorithm |
| URI | https://www.cambridge.org/core/product/identifier/S026357472200114X/type/journal_article https://www.proquest.com/docview/2774008075 |
| Volume | 41 |
| WOSCitedRecordID | wos000840548900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1469-8668 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0013147 issn: 0263-5747 databaseCode: P5Z dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1469-8668 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0013147 issn: 0263-5747 databaseCode: K7- dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1469-8668 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0013147 issn: 0263-5747 databaseCode: M7S dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1469-8668 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0013147 issn: 0263-5747 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6s9aAH3-Kz7MGTuNhkk-7mJCoWQSnBBxQvZR-JFjSpbVT8985uE2sRevESAsmSJbOZ-XZm8n0Ah6rlKcZ4k2oMTjTgQlJhjEc9IZnPAiaMdOz6N7zTEd1uFJcJt1HZVln5ROeoTa5tjvzER5xi4Q0PTwdv1KpG2epqKaFRg7plSfBc697dpIrgOYEx3GYwGiJurqqajjLasrBwS5Xo_ift_uZWmI5R0y7axZ32yn9nvArLJeIkZ-MlsgZzSbYOS794CDfgJkYcSAalfhFBHEtwt1uQz8SVpsgwV3kxIjbiGZJnpO8yEXiOZiGW9jr7IvLlCR9ePL9uwkP78v7iipYyC1T7AS8ogp40TEwkNHoc3dS-9kyU-EoKk3KuZIKQwkSKtXDnJ6M0NCJMQxl4mkkZoonZFsxneZZsA5GSIyLTiW_5RRUXiimetjBKKqFF5AU7cPzzknvlxzLqjRvNeO-PTXagWdmhp0vKcquc8TJryNHPkMGYr2PWzfuV5SazmZhtd_blPVi02vPjhrR9mC-G78kBLOiPoj8aNqB-ftmJbxtQu-a04dYlHuPw8RvPYuQe |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BRYIeWp4qLS0-tBeExcZO1s6hqqq2CLTbFQcq7S34FViJJtvdAOJP9Td27CQsCGlvHHqLlDjKZGY833jsbwA-6m6kORcdajA40VhIRaW1EY2k4ozHXFoV2PX7YjCQw2F6ugB_27MwfltlOyeGidqWxq-RHzLEKR7eiOTL-A_1XaN8dbVtoVGbRc_d3WLKNv188h31-4mxox9n345p01WAGhaLimKMzxNnU2nQwUzHMBPZ1DGtpM2F0MphBLWp5l1MdFSaJ1YmeaLiyHClEpSI43sX4QWKIbxf9QSdVS2i0NAM0xpOE8TpbRU1UFR71hfhqRnD-dXhQy6HxzHxcUgIce7o9f_2h9bgVYOoydfaBdZhwRUb8PIBz-Im9E8R55Jx05-JIE4nmM1X5NaF0huZlLqspsRHdEvKgozCSgteo9kRT-td3BF1dYHCVpe_t-DXs4izDUtFWbg3QJQSiDiNY54_VQupuRZ5F1GAlkamUbwDB_dKzZrJYJrVG-lE9sQGdqDT6j0zDSW77wxyNW_I_v2Qcc1HMu_h3dZSZl8zM5O382_vwcrx2c9-1j8Z9N7BKkN0V2--24WlanLt3sOyualG08mH4AUEzp_bqP4BoGI-4w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Path+planning+for+spot+welding+robots+based+on+improved+ant+colony+algorithm&rft.jtitle=Robotica&rft.au=Tan%2C+Yuesheng&rft.au=Ouyang%2C+Jie&rft.au=Zhang%2C+Zhuo&rft.au=Lao%2C+Yinglun&rft.date=2023-03-01&rft.pub=Cambridge+University+Press&rft.issn=0263-5747&rft.eissn=1469-8668&rft.volume=41&rft.issue=3&rft.spage=926&rft.epage=938&rft_id=info:doi/10.1017%2FS026357472200114X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-5747&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-5747&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-5747&client=summon |