Path planning for spot welding robots based on improved ant colony algorithm

A welding path can be planned effectively for spot welding robots using the ant colony algorithm, but the initial parameters of the ant colony algorithm are usually selected through human experience, resulting in an unreasonable planned path. This paper combines the ant colony algorithm with the par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotica Jg. 41; H. 3; S. 926 - 938
Hauptverfasser: Tan, Yuesheng, Ouyang, Jie, Zhang, Zhuo, Lao, Yinglun, Wen, Pengju
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge, UK Cambridge University Press 01.03.2023
Schlagworte:
ISSN:0263-5747, 1469-8668
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A welding path can be planned effectively for spot welding robots using the ant colony algorithm, but the initial parameters of the ant colony algorithm are usually selected through human experience, resulting in an unreasonable planned path. This paper combines the ant colony algorithm with the particle swarm algorithm and uses the particle swarm algorithm to train the initial parameters of the ant colony algorithm to plan an optimal path. Firstly, a mathematical model for spot welding path planning is established using the ant colony algorithm. Then, the particle swarm algorithm is introduced into the ant colony algorithm to find the optimal combination of parameters by treating the initial parameters $\alpha$ and $\beta$ of the ant colony algorithm and as two-dimensional coordinates in the particle swarm algorithm. Finally, the simulation analysis was carried out using MATLAB to obtain the paths of the improved ant colony algorithm for six different sets of parameters with an average path length of 10,357.7509 mm, but the average path length obtained by conventional algorithm was 10,830.8394 mm. Convergence analysis of the improved ant colony algorithm showed that the average number of iterations was 17. Therefore, the improved ant colony algorithm has higher solution quality and converges faster.
AbstractList A welding path can be planned effectively for spot welding robots using the ant colony algorithm, but the initial parameters of the ant colony algorithm are usually selected through human experience, resulting in an unreasonable planned path. This paper combines the ant colony algorithm with the particle swarm algorithm and uses the particle swarm algorithm to train the initial parameters of the ant colony algorithm to plan an optimal path. Firstly, a mathematical model for spot welding path planning is established using the ant colony algorithm. Then, the particle swarm algorithm is introduced into the ant colony algorithm to find the optimal combination of parameters by treating the initial parameters $\alpha$ and $\beta$ of the ant colony algorithm and as two-dimensional coordinates in the particle swarm algorithm. Finally, the simulation analysis was carried out using MATLAB to obtain the paths of the improved ant colony algorithm for six different sets of parameters with an average path length of 10,357.7509 mm, but the average path length obtained by conventional algorithm was 10,830.8394 mm. Convergence analysis of the improved ant colony algorithm showed that the average number of iterations was 17. Therefore, the improved ant colony algorithm has higher solution quality and converges faster.
A welding path can be planned effectively for spot welding robots using the ant colony algorithm, but the initial parameters of the ant colony algorithm are usually selected through human experience, resulting in an unreasonable planned path. This paper combines the ant colony algorithm with the particle swarm algorithm and uses the particle swarm algorithm to train the initial parameters of the ant colony algorithm to plan an optimal path. Firstly, a mathematical model for spot welding path planning is established using the ant colony algorithm. Then, the particle swarm algorithm is introduced into the ant colony algorithm to find the optimal combination of parameters by treating the initial parameters $\alpha$ and $\beta$ of the ant colony algorithm and as two-dimensional coordinates in the particle swarm algorithm. Finally, the simulation analysis was carried out using MATLAB to obtain the paths of the improved ant colony algorithm for six different sets of parameters with an average path length of 10,357.7509 mm, but the average path length obtained by conventional algorithm was 10,830.8394 mm. Convergence analysis of the improved ant colony algorithm showed that the average number of iterations was 17. Therefore, the improved ant colony algorithm has higher solution quality and converges faster.
Author Zhang, Zhuo
Ouyang, Jie
Tan, Yuesheng
Lao, Yinglun
Wen, Pengju
Author_xml – sequence: 1
  givenname: Yuesheng
  surname: Tan
  fullname: Tan, Yuesheng
  email: tanyuesheng@163.com
  organization: School of Technology, Beijing Forestry University, Beijing 100083, China
– sequence: 2
  givenname: Jie
  orcidid: 0000-0001-5776-0885
  surname: Ouyang
  fullname: Ouyang, Jie
  organization: School of Technology, Beijing Forestry University, Beijing 100083, China
– sequence: 3
  givenname: Zhuo
  surname: Zhang
  fullname: Zhang, Zhuo
  organization: School of Technology, Beijing Forestry University, Beijing 100083, China
– sequence: 4
  givenname: Yinglun
  surname: Lao
  fullname: Lao, Yinglun
  organization: School of Technology, Beijing Forestry University, Beijing 100083, China
– sequence: 5
  givenname: Pengju
  surname: Wen
  fullname: Wen, Pengju
  organization: School of Technology, Beijing Forestry University, Beijing 100083, China
BookMark eNp9kN9LwzAQx4NMcJv-Ab4FfK4madO0jzL8BQMFFXwr1zTdMtqkJpmy_96UDQRFH4477r6fuy83QxNjjULonJJLSqi4eiYsT7nIBGOEUJq9HaEpzfIyKfK8mKDpOE7G-Qmaeb-JmpRmYoqWTxDWeOjAGG1WuLUO-8EG_Km6Zmw4W9vgcQ1eNdgarPvB2Y9YgwlY2s6aHYZuZZ0O6_4UHbfQeXV2yHP0envzsrhPlo93D4vrZSJZJkLCeN5y1ZSFJEUMySRtSsVqKJpWiBoUKWOjTnNBBZQtbwrecsioTAG4TGk6Rxf7vdHL-1b5UG3s1pl4smJCZIQURPCoonuVdNZ7p9pqcLoHt6soqcanVb-eFhnxg5E6QNDWBAe6-5dMDyT0tdPNSn2b-pv6AlXVgeI
CitedBy_id crossref_primary_10_1016_j_sna_2024_115547
crossref_primary_10_4018_IJITSA_342613
crossref_primary_10_1016_j_rcim_2024_102791
crossref_primary_10_1109_ACCESS_2023_3290473
crossref_primary_10_3390_axioms12060525
crossref_primary_10_3390_a15120477
crossref_primary_10_1038_s41598_023_43783_7
crossref_primary_10_2166_wst_2023_410
crossref_primary_10_1007_s10586_025_05516_5
crossref_primary_10_1007_s13369_023_08541_x
crossref_primary_10_1016_j_asoc_2024_112433
crossref_primary_10_1109_ACCESS_2023_3310250
crossref_primary_10_1109_TIV_2024_3429500
crossref_primary_10_1016_j_engappai_2025_111890
crossref_primary_10_1017_S0263574725000037
crossref_primary_10_1108_IR_12_2024_0568
crossref_primary_10_3390_biomimetics7040210
crossref_primary_10_1017_S0263574724001930
crossref_primary_10_1016_j_matpr_2023_06_420
Cites_doi 10.1002/rob.1036
10.1016/j.plrev.2005.10.001
10.1177/1729881420936154
10.1016/j.asoc.2020.106443
10.1134/S1064230710010053
ContentType Journal Article
Copyright The Author(s), 2022. Published by Cambridge University Press
Copyright_xml – notice: The Author(s), 2022. Published by Cambridge University Press
DBID AAYXX
CITATION
3V.
7SC
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S026357472200114X
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1469-8668
EndPage 938
ExternalDocumentID 10_1017_S026357472200114X
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.DC
.FH
09C
09E
0E1
0R~
123
29P
3V.
4.4
5VS
6~7
74X
74Y
7~V
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ACBMC
ACCHT
ACETC
ACGFS
ACIMK
ACIWK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
F5P
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M7S
M7~
M8.
MVM
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S6-
S6U
SAAAG
T9M
TN5
UT1
VOH
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AAYXX
ABGDZ
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ADMLS
AFFHD
AFZFC
AKMAY
ANOYL
CITATION
PHGZM
PHGZT
PQGLB
7SC
7SP
7TB
7XB
8AL
8FD
8FK
F28
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c247t-256f5ed98c088c0c2c1d9e2ba8df77bae091d9b36717a9f5d85f5a41c3aa5c313
IEDL.DBID M7S
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000840548900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-5747
IngestDate Sat Sep 06 14:41:36 EDT 2025
Tue Nov 18 20:49:21 EST 2025
Sat Nov 29 02:10:23 EST 2025
Wed Mar 13 05:48:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords particle swarm algorithm
spot welding robot
path planning
ant colony algorithm
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-256f5ed98c088c0c2c1d9e2ba8df77bae091d9b36717a9f5d85f5a41c3aa5c313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5776-0885
PQID 2774008075
PQPubID 37292
PageCount 13
ParticipantIDs proquest_journals_2774008075
crossref_primary_10_1017_S026357472200114X
crossref_citationtrail_10_1017_S026357472200114X
cambridge_journals_10_1017_S026357472200114X
PublicationCentury 2000
PublicationDate 20230300
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 20230300
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Robotica
PublicationTitleAlternate Robotica
PublicationYear 2023
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2021; 9
2004; 20
2015; 36
2010; 49
2021; 45
2019; 50
2019; 42
2019; 31
2006; 13
2020; 94
2022; 40
2020; 17
2020; 16
2014; 35
2008; 30
2001; 18
2005; 2
1998; 98
2019; b
2018; 26
Ma (S026357472200114X_ref9) 2021; 45
Zhuang (S026357472200114X_ref1) 2004; 20
S026357472200114X_ref20
Wang (S026357472200114X_ref12) 2008; 30
S026357472200114X_ref6
Jia (S026357472200114X_ref17) 2020; 16
S026357472200114X_ref22
Pei (S026357472200114X_ref7) 2020; 94
Lavalle (S026357472200114X_ref4) 1998; 98
S026357472200114X_ref11
Liang (S026357472200114X_ref3) 2019; 42
Zhu (S026357472200114X_ref5) 2014; 35
Min (S026357472200114X_ref21) 2006; 13
Ling (S026357472200114X_ref13) 2015; 36
Xu (S026357472200114X_ref16) 2019; 31
Chen (S026357472200114X_ref14) 2019; b
Zhang (S026357472200114X_ref10) 2022; 40
Liu (S026357472200114X_ref8) 2021; 9
Zhang (S026357472200114X_ref15) 2019; 50
Zhu (S026357472200114X_ref2) 2018; 26
S026357472200114X_ref18
S026357472200114X_ref19
References_xml – volume: 42
  issue: 11
  year: 2019
  article-title: Path planning of indoor mobile robot based on improved ant colony algorithm
  publication-title: Electron. Meas. Technol
– volume: 18
  start-page: 445
  issue: 8
  year: 2001
  end-page: 461
  article-title: Point-to-point and multi-goal path planning for industrial robots
  publication-title: J. Intell. Robot Syst
– volume: 45
  start-page: 77
  issue: 06
  year: 2021
  end-page: 84
  article-title: Improved artificial potential field method for dual-manipulator path planning algorithm
  publication-title: J. Mech. Trans
– volume: 50
  start-page: 11
  issue: 5
  year: 2019
  article-title: Ant colony optimization with improved potential field heuristic for robot path planning
  publication-title: Trans. Chin. Soc. Agric. Mach
– volume: 30
  start-page: 16
  issue: 5
  year: 2008
  end-page: 17
  article-title: A study on BIW welding robot path planning based on ant colony algorithm
  publication-title: Manufact. Automat
– volume: b
  start-page: 1
  issue: b
  year: 2019
  end-page: 10
  article-title: Mobile robot path planning using ant colony algorithm and improved potential field method
  publication-title: Comput. Intel. Neurosci.
– volume: 35
  start-page: 2482
  issue: 11
  year: 2014
  end-page: 2931
  article-title: Welding spot detection path planning method based on a novel particle swarm algorithm
  publication-title: Chin J. Sci. Instrum.
– volume: 9
  start-page: 32
  year: 2021
  end-page: 38
  article-title: Global dynamic path planning fusion algorithm combining jump-A* algorithm and dynamic window approach
  publication-title: IEEE Access
– volume: 17
  start-page: 1
  issue: 5
  year: 2020
  end-page: 19
  article-title: Multi-robot path planning using an improved self-adaptive particle swarm optimization
  publication-title: Int. J. Adv Robot. Syst
– volume: 31
  start-page: 531
  issue: 10
  year: 2019
  end-page: 533
  article-title: Path planning of mobile robot based on improved adaptive ant colony algorithm
  publication-title: J. Electron. Meas. Instrument
– volume: 94
  start-page: 106443
  year: 2020
  article-title: A parallel compact cuckoo search algorithm for three-dimensional path planning
  publication-title: Appl. Soft. Comput.
– volume: 98
  start-page: 1
  issue: 11
  year: 1998
  end-page: 4
  article-title: Rapidly-exploring random trees: a new tool for path planning
  publication-title: Computer Science Dept
– volume: 40
  start-page: 1
  issue: 04
  year: 2022
  end-page: 18
  article-title: Constrained sampling method based RRT algorithm for manipulator motion planning
  publication-title: Comput. Integr. Manuf.
– volume: 16
  issue: 6
  year: 2020
  article-title: Research on evacuation path planning in single-story building fire based on genetic-ant colony algorithm
  publication-title: J. Saf. Sci. Technol
– volume: 20
  start-page: 6
  issue: 3
  year: 2004
  article-title: Research on path planning and related algorithms for robots
  publication-title: Bull. Sci. Technol
– volume: 13
  start-page: 402
  issue: 4
  year: 2006
  end-page: 405
  article-title: Solving traveling salesman problem by an ACO and PSO based hybrid algorithm
  publication-title: J. Jilin Univ. (Inform. Sci. Edn.)
– volume: 26
  start-page: 6
  issue: 10
  year: 2018
  article-title: Path planning of manipulator to avoid obstacle based on improved artificial potential field method
  publication-title: Comput. Meas. Cont
– volume: 36
  start-page: 5
  issue: 01
  year: 2015
  end-page: 9
  article-title: Application of ant colony algorithm in welding path planning of BIW
  publication-title: Trans. China Weld. Inst
– volume: 49
  start-page: 30
  issue: 1
  year: 2010
  end-page: 43
  article-title: Ant colony optimization algorithms for solving transportation problems
  publication-title: J. Comput. Sys. Sc. Int
– volume: 2
  start-page: 353
  issue: 4
  year: 2005
  end-page: 373
  article-title: Ant colony optimization: introduction and recent trends
  publication-title: Phys. Life. Rev
– volume: 50
  start-page: 11
  year: 2019
  ident: S026357472200114X_ref15
  article-title: Ant colony optimization with improved potential field heuristic for robot path planning
  publication-title: Trans. Chin. Soc. Agric. Mach
– ident: S026357472200114X_ref11
– ident: S026357472200114X_ref6
  doi: 10.1002/rob.1036
– volume: 13
  start-page: 402
  year: 2006
  ident: S026357472200114X_ref21
  article-title: Solving traveling salesman problem by an ACO and PSO based hybrid algorithm
  publication-title: J. Jilin Univ. (Inform. Sci. Edn.)
– volume: 45
  start-page: 77
  year: 2021
  ident: S026357472200114X_ref9
  article-title: Improved artificial potential field method for dual-manipulator path planning algorithm
  publication-title: J. Mech. Trans
– volume: 30
  start-page: 16
  year: 2008
  ident: S026357472200114X_ref12
  article-title: A study on BIW welding robot path planning based on ant colony algorithm
  publication-title: Manufact. Automat
– volume: 26
  start-page: 6
  year: 2018
  ident: S026357472200114X_ref2
  article-title: Path planning of manipulator to avoid obstacle based on improved artificial potential field method
  publication-title: Comput. Meas. Cont
– ident: S026357472200114X_ref19
  doi: 10.1016/j.plrev.2005.10.001
– volume: 16
  year: 2020
  ident: S026357472200114X_ref17
  article-title: Research on evacuation path planning in single-story building fire based on genetic-ant colony algorithm
  publication-title: J. Saf. Sci. Technol
– volume: 35
  start-page: 2482
  year: 2014
  ident: S026357472200114X_ref5
  article-title: Welding spot detection path planning method based on a novel particle swarm algorithm
  publication-title: Chin J. Sci. Instrum.
– ident: S026357472200114X_ref22
  doi: 10.1177/1729881420936154
– volume: 36
  start-page: 5
  year: 2015
  ident: S026357472200114X_ref13
  article-title: Application of ant colony algorithm in welding path planning of BIW
  publication-title: Trans. China Weld. Inst
– volume: 9
  start-page: 32
  year: 2021
  ident: S026357472200114X_ref8
  article-title: Global dynamic path planning fusion algorithm combining jump-A* algorithm and dynamic window approach
  publication-title: IEEE Access
– volume: 40
  start-page: 1
  year: 2022
  ident: S026357472200114X_ref10
  article-title: Constrained sampling method based RRT algorithm for manipulator motion planning
  publication-title: Comput. Integr. Manuf.
– ident: S026357472200114X_ref18
– volume: b
  start-page: 1
  year: 2019
  ident: S026357472200114X_ref14
  article-title: Mobile robot path planning using ant colony algorithm and improved potential field method
  publication-title: Comput. Intel. Neurosci.
– volume: 42
  year: 2019
  ident: S026357472200114X_ref3
  article-title: Path planning of indoor mobile robot based on improved ant colony algorithm
  publication-title: Electron. Meas. Technol
– volume: 20
  start-page: 6
  year: 2004
  ident: S026357472200114X_ref1
  article-title: Research on path planning and related algorithms for robots
  publication-title: Bull. Sci. Technol
– volume: 94
  start-page: 106443
  year: 2020
  ident: S026357472200114X_ref7
  article-title: A parallel compact cuckoo search algorithm for three-dimensional path planning
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2020.106443
– volume: 31
  start-page: 531
  year: 2019
  ident: S026357472200114X_ref16
  article-title: Path planning of mobile robot based on improved adaptive ant colony algorithm
  publication-title: J. Electron. Meas. Instrument
– ident: S026357472200114X_ref20
  doi: 10.1134/S1064230710010053
– volume: 98
  start-page: 1
  year: 1998
  ident: S026357472200114X_ref4
  article-title: Rapidly-exploring random trees: a new tool for path planning
  publication-title: Computer Science Dept
SSID ssj0013147
Score 2.4700747
Snippet A welding path can be planned effectively for spot welding robots using the ant colony algorithm, but the initial parameters of the ant colony algorithm are...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 926
SubjectTerms Algorithms
Ant colony optimization
Applications of reconfigurable mechanisms and reconfigurable robots
Convergence
Efficiency
Genetic algorithms
Heuristic
Parameters
Path planning
Pheromones
Planning
Robots
Simulation
Spot welding
Title Path planning for spot welding robots based on improved ant colony algorithm
URI https://www.cambridge.org/core/product/identifier/S026357472200114X/type/journal_article
https://www.proquest.com/docview/2774008075
Volume 41
WOSCitedRecordID wos000840548900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1469-8668
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0013147
  issn: 0263-5747
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1469-8668
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0013147
  issn: 0263-5747
  databaseCode: K7-
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1469-8668
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0013147
  issn: 0263-5747
  databaseCode: M7S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1469-8668
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0013147
  issn: 0263-5747
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6s9aAH3-Kz7MGTuNhkk-7mJCoWQSnBBxQvZR-JFjSpbVT8985uE2sRevESAsmSJbOZ-XZm8n0Ah6rlKcZ4k2oMTjTgQlJhjEc9IZnPAiaMdOz6N7zTEd1uFJcJt1HZVln5ROeoTa5tjvzER5xi4Q0PTwdv1KpG2epqKaFRg7plSfBc697dpIrgOYEx3GYwGiJurqqajjLasrBwS5Xo_ift_uZWmI5R0y7axZ32yn9nvArLJeIkZ-MlsgZzSbYOS794CDfgJkYcSAalfhFBHEtwt1uQz8SVpsgwV3kxIjbiGZJnpO8yEXiOZiGW9jr7IvLlCR9ePL9uwkP78v7iipYyC1T7AS8ogp40TEwkNHoc3dS-9kyU-EoKk3KuZIKQwkSKtXDnJ6M0NCJMQxl4mkkZoonZFsxneZZsA5GSIyLTiW_5RRUXiimetjBKKqFF5AU7cPzzknvlxzLqjRvNeO-PTXagWdmhp0vKcquc8TJryNHPkMGYr2PWzfuV5SazmZhtd_blPVi02vPjhrR9mC-G78kBLOiPoj8aNqB-ftmJbxtQu-a04dYlHuPw8RvPYuQe
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BRYIeWp4qLS0-tBeExcZO1s6hqqq2CLTbFQcq7S34FViJJtvdAOJP9Td27CQsCGlvHHqLlDjKZGY833jsbwA-6m6kORcdajA40VhIRaW1EY2k4ozHXFoV2PX7YjCQw2F6ugB_27MwfltlOyeGidqWxq-RHzLEKR7eiOTL-A_1XaN8dbVtoVGbRc_d3WLKNv188h31-4mxox9n345p01WAGhaLimKMzxNnU2nQwUzHMBPZ1DGtpM2F0MphBLWp5l1MdFSaJ1YmeaLiyHClEpSI43sX4QWKIbxf9QSdVS2i0NAM0xpOE8TpbRU1UFR71hfhqRnD-dXhQy6HxzHxcUgIce7o9f_2h9bgVYOoydfaBdZhwRUb8PIBz-Im9E8R55Jx05-JIE4nmM1X5NaF0huZlLqspsRHdEvKgozCSgteo9kRT-td3BF1dYHCVpe_t-DXs4izDUtFWbg3QJQSiDiNY54_VQupuRZ5F1GAlkamUbwDB_dKzZrJYJrVG-lE9sQGdqDT6j0zDSW77wxyNW_I_v2Qcc1HMu_h3dZSZl8zM5O382_vwcrx2c9-1j8Z9N7BKkN0V2--24WlanLt3sOyualG08mH4AUEzp_bqP4BoGI-4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Path+planning+for+spot+welding+robots+based+on+improved+ant+colony+algorithm&rft.jtitle=Robotica&rft.au=Tan%2C+Yuesheng&rft.au=Ouyang%2C+Jie&rft.au=Zhang%2C+Zhuo&rft.au=Lao%2C+Yinglun&rft.date=2023-03-01&rft.pub=Cambridge+University+Press&rft.issn=0263-5747&rft.eissn=1469-8668&rft.volume=41&rft.issue=3&rft.spage=926&rft.epage=938&rft_id=info:doi/10.1017%2FS026357472200114X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-5747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-5747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-5747&client=summon