Synthetic Time-Series Data Generation for Smart Grids Using 3D Autoencoder GAN
Given the growing significance of data-driven approaches in analysis and decision-making in smart grid, the availability of diverse and representative datasets is paramount. However, challenges such as privacy concerns, data size limitations, and data quality issues have constrained the usage of rea...
Uloženo v:
| Vydáno v: | IEEE transactions on industrial informatics Ročník 21; číslo 7; s. 5047 - 5058 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1551-3203, 1941-0050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Given the growing significance of data-driven approaches in analysis and decision-making in smart grid, the availability of diverse and representative datasets is paramount. However, challenges such as privacy concerns, data size limitations, and data quality issues have constrained the usage of real-world data. In this paper, we introduce the 3D Autoencoder Generative Adversarial Network (3DAE GAN) as a solution to generate high-resolution and multivariate synthetic time-series data capable of representing various real power consumption patterns across different households and driving data for Electric Vehicles (EVs). Beyond the conventional GAN structure, the incorporation of both the Autoencoder and 3D-convolution processes enables a more comprehensive extraction of patterns in data, thereby addressing limitations present in existing data generation methods. Evaluation results using the Pecan Street and Emobpy simulated EV dataset demonstrate that the proposed method generates synthetic data with higher similarity scores compared to existing approaches. Furthermore, downstream prediction tasks are conducted to establish the comparability between using the original data and the synthetic data, revealing no significant differences. Moreover, the risk of possible information leakage from synthetic data about original data is evaluated by performing membership inference attacks and population attacks on the prediction models that are trained with synthetic data. The robustness of the synthetic data are examined when facing FGSM attacks. |
|---|---|
| AbstractList | Given the growing significance of data-driven approaches in analysis and decision-making in smart grid, the availability of diverse and representative datasets is paramount. However, challenges such as privacy concerns, data size limitations, and data quality issues have constrained the usage of real-world data. In this paper, we introduce the 3D Autoencoder Generative Adversarial Network (3DAE GAN) as a solution to generate high-resolution and multivariate synthetic time-series data capable of representing various real power consumption patterns across different households and driving data for Electric Vehicles (EVs). Beyond the conventional GAN structure, the incorporation of both the Autoencoder and 3D-convolution processes enables a more comprehensive extraction of patterns in data, thereby addressing limitations present in existing data generation methods. Evaluation results using the Pecan Street and Emobpy simulated EV dataset demonstrate that the proposed method generates synthetic data with higher similarity scores compared to existing approaches. Furthermore, downstream prediction tasks are conducted to establish the comparability between using the original data and the synthetic data, revealing no significant differences. Moreover, the risk of possible information leakage from synthetic data about original data is evaluated by performing membership inference attacks and population attacks on the prediction models that are trained with synthetic data. The robustness of the synthetic data are examined when facing FGSM attacks. |
| Author | Sikdar, Biplab Zhang, Guihai |
| Author_xml | – sequence: 1 givenname: Guihai orcidid: 0009-0002-3529-3280 surname: Zhang fullname: Zhang, Guihai email: e0534010@u.nus.edu organization: Electrical and Computer Engineering, National University of Singapore, Singapore – sequence: 2 givenname: Biplab orcidid: 0000-0002-0084-4647 surname: Sikdar fullname: Sikdar, Biplab email: bsikdar@nus.edu.sg organization: Electrical and Computer Engineering, National University of Singapore, Singapore |
| BookMark | eNpNkL1PwzAQxS1UJEphZ2CwxJzis-MkHqsWQqWqDA2zlTgXSEXtYqdD_3tc2gHd8G547z5-t2RknUVCHoBNAZh6rpbLKWdcToUUBYC8ImNQKSSMSTaKvZSQCM7EDbkNYcuYyJlQY7LeHO3whUNvaNXvMNmg7zHQRT3UtESLvh56Z2nnPN3saj_Q0vdtoB-ht59ULOjsMDi0xrXoaTlb35Hrrv4OeH_RCaleX6r5W7J6L5fz2SoxPM2HBDrkWLSYFw0XDUhl0sJAU6cpQIZRObQZtk18LI1llBQpywwWPO-KphET8nQeu_fu54Bh0Ft38DZu1IKDKhSoTEQXO7uMdyF47PTe9_GJowamT9B0hKZP0PQFWow8niM9Iv6z_52hxC98uWhn |
| CODEN | ITIICH |
| Cites_doi | 10.1109/TSG.2020.3007984 10.1007/978-3-031-09342-5_13 10.1109/TPWRS.2018.2794541 10.1145/3548606.3560675 10.1109/TII.2018.2885365 10.1109/SP.2017.41 10.1109/TII.2022.3182781 10.1109/sp.2019.00065 10.1016/j.egyr.2023.04.151 10.1145/3559540 10.1016/j.cose.2023.103432 10.1016/j.enbuild.2017.04.072 10.1016/j.prime.2022.100030 10.3390/en13164211 10.1109/CCTA.2019.8920488 10.1109/ICC45855.2022.9839249 10.1007/s00521-022-06888-0 10.1016/j.egypro.2019.01.399 10.3390/en13010130 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2025.3538115 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 5058 |
| ExternalDocumentID | 10_1109_TII_2025_3538115 10949499 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Asian Institute of Digital Finance grantid: A-0003504-09-00 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c247t-1fe2e8de78b23b159c48c1ba44116eba421d6edb1094949c953406ce827f8bb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001470477100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-3203 |
| IngestDate | Sat Nov 08 14:18:21 EST 2025 Sat Nov 29 06:58:56 EST 2025 Wed Nov 19 08:27:08 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-1fe2e8de78b23b159c48c1ba44116eba421d6edb1094949c953406ce827f8bb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0084-4647 0009-0002-3529-3280 |
| PQID | 3219891963 |
| PQPubID | 85507 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_10949499 proquest_journals_3219891963 crossref_primary_10_1109_TII_2025_3538115 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Wang (ref19) 2015 ref12 ref11 ref10 ref2 ref1 ref17 ref16 Goodfellow (ref25) 2014 Gulrajani (ref15) 2017; 30 ref23 ref20 ref22 Kumar (ref24) 2020 ref21 ref8 Arjovsky (ref14) 2017 ref7 ref9 ref4 INC (ref18) 2023 ref3 ref6 ref5 |
| References_xml | – start-page: 214 issue: PMLR volume-title: Proc. Int. Conf. Mach. Learn. year: 2017 ident: ref14 article-title: Wasserstein generative adversarial networks – year: 2023 ident: ref18 article-title: Dataport. pecan street inc. dataport – ident: ref9 doi: 10.1109/TSG.2020.3007984 – start-page: 3939 volume-title: Proc. 24th Int. Conf. Artif. Intell. year: 2015 ident: ref19 article-title: Imaging time-series to improve classification and imputation – ident: ref3 doi: 10.1007/978-3-031-09342-5_13 – ident: ref13 doi: 10.1109/TPWRS.2018.2794541 – year: 2014 ident: ref25 article-title: Explaining and harnessing adversarial examples – ident: ref21 doi: 10.1145/3548606.3560675 – ident: ref12 doi: 10.1109/TII.2018.2885365 – ident: ref23 doi: 10.1109/SP.2017.41 – ident: ref11 doi: 10.1109/TII.2022.3182781 – ident: ref22 doi: 10.1109/sp.2019.00065 – ident: ref8 doi: 10.1016/j.egyr.2023.04.151 – ident: ref1 doi: 10.1145/3559540 – ident: ref16 doi: 10.1016/j.cose.2023.103432 – ident: ref4 doi: 10.1016/j.enbuild.2017.04.072 – ident: ref20 doi: 10.1016/j.prime.2022.100030 – volume-title: Proc. Workshop Hot Topics Privacy Enhancing Technol. year: 2020 ident: ref24 article-title: Ml privacy meter: Aiding regulatory compliance by quantifying the privacy risks of machine learning – ident: ref7 doi: 10.3390/en13164211 – ident: ref6 doi: 10.1109/CCTA.2019.8920488 – volume: 30 start-page: 5769 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2017 ident: ref15 article-title: Improved training of Wasserstein gans – ident: ref17 doi: 10.1109/ICC45855.2022.9839249 – ident: ref2 doi: 10.1007/s00521-022-06888-0 – ident: ref5 doi: 10.1016/j.egypro.2019.01.399 – ident: ref10 doi: 10.3390/en13010130 |
| SSID | ssj0037039 |
| Score | 2.4339566 |
| Snippet | Given the growing significance of data-driven approaches in analysis and decision-making in smart grid, the availability of diverse and representative datasets... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 5047 |
| SubjectTerms | 3D convolution Autoencoders Correlation Data models Data privacy Datasets Deep learning Electric vehicles Generative adversarial networks generative adversarial networks (GANs) Households Load modeling Multivariate analysis Power demand power grid data Prediction models Smart grid Synthetic data Three-dimensional displays Time series time series generation Training |
| Title | Synthetic Time-Series Data Generation for Smart Grids Using 3D Autoencoder GAN |
| URI | https://ieeexplore.ieee.org/document/10949499 https://www.proquest.com/docview/3219891963 |
| Volume | 21 |
| WOSCitedRecordID | wos001470477100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBz4nTKTl48ZCZNm3aHodzcyBF2JDdStK8wA520naC_71J2sJAPHhqDy9teC_vvV-S94HQvQooi6hgxBhgSQKuNZFCSiJUoqkOBU9cFv_7a5Sm8WqVvLXJ6i4XBgBc8BmM7Ku7y1ebfGuPyoyGJ66Yyj7ajyLeJGt1Ztf80bUNsxCAMJ-y7k6SJo_L-dzsBP1wxIx6e7YD7o4Pck1Vflli516mJ_-c2Ck6bnEkHjeCP0N7UJyjo53qghcoXXwXBt4ZAmwTPYg9CIMKT0QtcFNt2goFG9SKFx9mBeFZuVYVdkEEmE3weFtvbJlLBSWejdM-Wk6fl08vpG2fQHI_iGriafAhVhDF0mfSwJY8iHNPCgOAPA7m6XuKg5Lt5PMkZMa75xD7kY6lZJeoV2wKuELYbl1DEFxKzi2JhJiqnDHQOpGCsgF66PiZfTZFMjK3uaBJZnifWd5nLe8HqG_5t0PXsG6Ahp0EslaNqoz5NqTLGonrP4bdoEP79SaAdoh6dbmFW3SQf9XrqrxzK-QHf-O5Bg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gXrwWbFaNQcvHqLZZJ_HolaLdRFcxNuSbGahB7fSbgX_vUl2CwXx4Gn3kJAwk5n5JpkHwKX2mYiYFNQoYEX9sCypkkpRqZOSlYEME5fF_zaK0jR-f09e2mR1lwuDiC74DK_tr3vL15Nibq_KjIQnrpjKKqwHvs9Zk661ULxmTdc4zIIAKjgTi1dJltxkw6HxBXlwLYyAe7YH7pIVcm1VfuliZ2AGu__c2h7stEiS9BvW78MKVgewvVRf8BDS1-_KADwzgNhUD2qvwnBG7mQtSVNv2rKFGNxKXj_MGSIP07GeERdGQMQd6c_riS10qXFKHvppB7LBfXb7SNsGCrTgflRTr0SOscYoVlwoA1wKPy48JQ0E8kI0X-7pELVqN18kgTD2vcCYR2WslDiCtWpS4TEQ67wGKEOlwtAOURgzXQiBZZkoyUQXrhb0zD-bMhm5cy9Ykhva55b2eUv7LnQs_ZbGNaTrQm_BgbwVpFkuuA3qsmri5I9pF7D5mD2P8tEwfTqFLbtSE07bg7V6Oscz2Ci-6vFseu5Oyw9PfbxN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+Time-Series+Data+Generation+for+Smart+Grids+Using+3D+Autoencoder+GAN&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Zhang%2C+Guihai&rft.au=Sikdar%2C+Biplab&rft.date=2025-07-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=21&rft.issue=7&rft.spage=5047&rft.epage=5058&rft_id=info:doi/10.1109%2FTII.2025.3538115&rft.externalDocID=10949499 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |