Synthetic Time-Series Data Generation for Smart Grids Using 3D Autoencoder GAN

Given the growing significance of data-driven approaches in analysis and decision-making in smart grid, the availability of diverse and representative datasets is paramount. However, challenges such as privacy concerns, data size limitations, and data quality issues have constrained the usage of rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics Jg. 21; H. 7; S. 5047 - 5058
Hauptverfasser: Zhang, Guihai, Sikdar, Biplab
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1551-3203, 1941-0050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Given the growing significance of data-driven approaches in analysis and decision-making in smart grid, the availability of diverse and representative datasets is paramount. However, challenges such as privacy concerns, data size limitations, and data quality issues have constrained the usage of real-world data. In this paper, we introduce the 3D Autoencoder Generative Adversarial Network (3DAE GAN) as a solution to generate high-resolution and multivariate synthetic time-series data capable of representing various real power consumption patterns across different households and driving data for Electric Vehicles (EVs). Beyond the conventional GAN structure, the incorporation of both the Autoencoder and 3D-convolution processes enables a more comprehensive extraction of patterns in data, thereby addressing limitations present in existing data generation methods. Evaluation results using the Pecan Street and Emobpy simulated EV dataset demonstrate that the proposed method generates synthetic data with higher similarity scores compared to existing approaches. Furthermore, downstream prediction tasks are conducted to establish the comparability between using the original data and the synthetic data, revealing no significant differences. Moreover, the risk of possible information leakage from synthetic data about original data is evaluated by performing membership inference attacks and population attacks on the prediction models that are trained with synthetic data. The robustness of the synthetic data are examined when facing FGSM attacks.
AbstractList Given the growing significance of data-driven approaches in analysis and decision-making in smart grid, the availability of diverse and representative datasets is paramount. However, challenges such as privacy concerns, data size limitations, and data quality issues have constrained the usage of real-world data. In this paper, we introduce the 3D Autoencoder Generative Adversarial Network (3DAE GAN) as a solution to generate high-resolution and multivariate synthetic time-series data capable of representing various real power consumption patterns across different households and driving data for Electric Vehicles (EVs). Beyond the conventional GAN structure, the incorporation of both the Autoencoder and 3D-convolution processes enables a more comprehensive extraction of patterns in data, thereby addressing limitations present in existing data generation methods. Evaluation results using the Pecan Street and Emobpy simulated EV dataset demonstrate that the proposed method generates synthetic data with higher similarity scores compared to existing approaches. Furthermore, downstream prediction tasks are conducted to establish the comparability between using the original data and the synthetic data, revealing no significant differences. Moreover, the risk of possible information leakage from synthetic data about original data is evaluated by performing membership inference attacks and population attacks on the prediction models that are trained with synthetic data. The robustness of the synthetic data are examined when facing FGSM attacks.
Author Sikdar, Biplab
Zhang, Guihai
Author_xml – sequence: 1
  givenname: Guihai
  orcidid: 0009-0002-3529-3280
  surname: Zhang
  fullname: Zhang, Guihai
  email: e0534010@u.nus.edu
  organization: Electrical and Computer Engineering, National University of Singapore, Singapore
– sequence: 2
  givenname: Biplab
  orcidid: 0000-0002-0084-4647
  surname: Sikdar
  fullname: Sikdar, Biplab
  email: bsikdar@nus.edu.sg
  organization: Electrical and Computer Engineering, National University of Singapore, Singapore
BookMark eNpNkL1PwzAQxS1UJEphZ2CwxJzis-MkHqsWQqWqDA2zlTgXSEXtYqdD_3tc2gHd8G547z5-t2RknUVCHoBNAZh6rpbLKWdcToUUBYC8ImNQKSSMSTaKvZSQCM7EDbkNYcuYyJlQY7LeHO3whUNvaNXvMNmg7zHQRT3UtESLvh56Z2nnPN3saj_Q0vdtoB-ht59ULOjsMDi0xrXoaTlb35Hrrv4OeH_RCaleX6r5W7J6L5fz2SoxPM2HBDrkWLSYFw0XDUhl0sJAU6cpQIZRObQZtk18LI1llBQpywwWPO-KphET8nQeu_fu54Bh0Ft38DZu1IKDKhSoTEQXO7uMdyF47PTe9_GJowamT9B0hKZP0PQFWow8niM9Iv6z_52hxC98uWhn
CODEN ITIICH
Cites_doi 10.1109/TSG.2020.3007984
10.1007/978-3-031-09342-5_13
10.1109/TPWRS.2018.2794541
10.1145/3548606.3560675
10.1109/TII.2018.2885365
10.1109/SP.2017.41
10.1109/TII.2022.3182781
10.1109/sp.2019.00065
10.1016/j.egyr.2023.04.151
10.1145/3559540
10.1016/j.cose.2023.103432
10.1016/j.enbuild.2017.04.072
10.1016/j.prime.2022.100030
10.3390/en13164211
10.1109/CCTA.2019.8920488
10.1109/ICC45855.2022.9839249
10.1007/s00521-022-06888-0
10.1016/j.egypro.2019.01.399
10.3390/en13010130
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2025.3538115
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 5058
ExternalDocumentID 10_1109_TII_2025_3538115
10949499
Genre orig-research
GrantInformation_xml – fundername: Asian Institute of Digital Finance
  grantid: A-0003504-09-00
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c247t-1fe2e8de78b23b159c48c1ba44116eba421d6edb1094949c953406ce827f8bb3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001470477100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Sat Nov 08 14:18:21 EST 2025
Sat Nov 29 06:58:56 EST 2025
Wed Nov 19 08:27:08 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-1fe2e8de78b23b159c48c1ba44116eba421d6edb1094949c953406ce827f8bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0084-4647
0009-0002-3529-3280
PQID 3219891963
PQPubID 85507
PageCount 12
ParticipantIDs ieee_primary_10949499
proquest_journals_3219891963
crossref_primary_10_1109_TII_2025_3538115
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Wang (ref19) 2015
ref12
ref11
ref10
ref2
ref1
ref17
ref16
Goodfellow (ref25) 2014
Gulrajani (ref15) 2017; 30
ref23
ref20
ref22
Kumar (ref24) 2020
ref21
ref8
Arjovsky (ref14) 2017
ref7
ref9
ref4
INC (ref18) 2023
ref3
ref6
ref5
References_xml – start-page: 214
  issue: PMLR
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2017
  ident: ref14
  article-title: Wasserstein generative adversarial networks
– year: 2023
  ident: ref18
  article-title: Dataport. pecan street inc. dataport
– ident: ref9
  doi: 10.1109/TSG.2020.3007984
– start-page: 3939
  volume-title: Proc. 24th Int. Conf. Artif. Intell.
  year: 2015
  ident: ref19
  article-title: Imaging time-series to improve classification and imputation
– ident: ref3
  doi: 10.1007/978-3-031-09342-5_13
– ident: ref13
  doi: 10.1109/TPWRS.2018.2794541
– year: 2014
  ident: ref25
  article-title: Explaining and harnessing adversarial examples
– ident: ref21
  doi: 10.1145/3548606.3560675
– ident: ref12
  doi: 10.1109/TII.2018.2885365
– ident: ref23
  doi: 10.1109/SP.2017.41
– ident: ref11
  doi: 10.1109/TII.2022.3182781
– ident: ref22
  doi: 10.1109/sp.2019.00065
– ident: ref8
  doi: 10.1016/j.egyr.2023.04.151
– ident: ref1
  doi: 10.1145/3559540
– ident: ref16
  doi: 10.1016/j.cose.2023.103432
– ident: ref4
  doi: 10.1016/j.enbuild.2017.04.072
– ident: ref20
  doi: 10.1016/j.prime.2022.100030
– volume-title: Proc. Workshop Hot Topics Privacy Enhancing Technol.
  year: 2020
  ident: ref24
  article-title: Ml privacy meter: Aiding regulatory compliance by quantifying the privacy risks of machine learning
– ident: ref7
  doi: 10.3390/en13164211
– ident: ref6
  doi: 10.1109/CCTA.2019.8920488
– volume: 30
  start-page: 5769
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref15
  article-title: Improved training of Wasserstein gans
– ident: ref17
  doi: 10.1109/ICC45855.2022.9839249
– ident: ref2
  doi: 10.1007/s00521-022-06888-0
– ident: ref5
  doi: 10.1016/j.egypro.2019.01.399
– ident: ref10
  doi: 10.3390/en13010130
SSID ssj0037039
Score 2.4338746
Snippet Given the growing significance of data-driven approaches in analysis and decision-making in smart grid, the availability of diverse and representative datasets...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 5047
SubjectTerms 3D convolution
Autoencoders
Correlation
Data models
Data privacy
Datasets
Deep learning
Electric vehicles
Generative adversarial networks
generative adversarial networks (GANs)
Households
Load modeling
Multivariate analysis
Power demand
power grid data
Prediction models
Smart grid
Synthetic data
Three-dimensional displays
Time series
time series generation
Training
Title Synthetic Time-Series Data Generation for Smart Grids Using 3D Autoencoder GAN
URI https://ieeexplore.ieee.org/document/10949499
https://www.proquest.com/docview/3219891963
Volume 21
WOSCitedRecordID wos001470477100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxOnU3Lw4qGzSdqlOQ7n5kCGsB12K03yAju4ydYJ_ve-pB0MxIOnlpKU8L5f8t4vhDwoq4Vh3EaSaRklVuqocAUqXiLAqARiU0Hmv8nJJJvP1XvdrB56YQAgFJ9B17-Gs3y7Mlu_VYYargKYSoM0pOxVzVo7sytQdFUAR01ZJHgsdmeSsXqajceYCfK0K1C9mb8Bd88HhUtVflni4F6Gp_9c2Bk5qeNI2q8Yf04OYHlBjvfQBS_JZPq9xPAOB1Df6BH5jTDY0EFRFrRCm_ZMoRi10ukHShAdrRd2Q0MRARUD2t-WKw9zaWFNR_1Ji8yGL7Pn16i-PiEyPJFlxBxwyCzITHOhMWwxSWaYLjAAYj3AJ2e2B1bXizcqFejdDWRcukxrcUWay9USrgllSjlMrBTmNr1Ea5Y5p_FTkcbOuTQTbfK4o2f-WYFk5CG5iFWOtM897fOa9m3S8vTbG1eRrk06Ow7ktRptcsF9SZc3Ejd_TLslR_7vVQFthzTL9RbuyKH5Kheb9X2QkB_jtbgd
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6xgAQceCPK0wcuHMLGdtLEx4pnRYmQ6IFbFNtjqQda1KZI_HvGTipVWnHYU6LIVqx5jz3zGeBKWS0NFzbKuM6ixGY6qlxFipdINCrB2DSQ-YOsKPL3d_XaNquHXhhEDMVneONfw1m-nZi53yojDVcBTOUPrKVJIuKmXWtheCUJrwrwqCmPpIjl4lQyVn-H_T7lgiK9kaTg3N-Bu-SFwrUq_9ji4GAedv5zabuw3UaSrNewfg9WcLwPW0v4ggdQvH2PKcCjAcy3ekR-Kwxn7K6qK9bgTXu2MIpb2dsHyRB7nI7sjIUyAibvWG9eTzzQpcUpe-wVhzB8uB_ePkXtBQqREUlWR9yhwNxilmshNQUuJskN1xWFQLyL9BTcdtHqdvFGpZL8u8FcZC7XWh7B6ngyxmNgXClHqZWi7KabaM1z5zR9qtLYOZfmsgPXC3qWnw1MRhnSi1iVRPvS075sad-BQ0-_pXEN6TpwtuBA2SrSrJTCF3V5M3Hyy7RL2HgavgzKQb94PoVN_6emnPYMVuvpHM9h3XzVo9n0IkjLD6dJu2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+Time-Series+Data+Generation+for+Smart+Grids+Using+3D+Autoencoder+GAN&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Zhang%2C+Guihai&rft.au=Sikdar%2C+Biplab&rft.date=2025-07-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=21&rft.issue=7&rft.spage=5047&rft.epage=5058&rft_id=info:doi/10.1109%2FTII.2025.3538115&rft.externalDocID=10949499
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon