Deep Learning-Based Auto-Encoder for Time-Offset Sub-Faster-Than-Nyquist Downlink NOMA With Timing Errors and Imperfect CSI

This paper presents architecture designs and performance evaluations for the encoding and decoding of transmitted and received sequences for downlink time-offset sub-faster-than-Nyquist non-orthogonal multiple access signaling (TO-sFTN-NOMA). A conventional singular value decomposition (SVD)-based s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of selected topics in signal processing Ročník 18; číslo 7; s. 1178 - 1193
Hlavní autoři: Aboutaleb, Ahmed, Torabi, Mohammad, Belzer, Benjamin, Sivakumar, Krishnamoorthy
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1932-4553, 1941-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents architecture designs and performance evaluations for the encoding and decoding of transmitted and received sequences for downlink time-offset sub-faster-than-Nyquist non-orthogonal multiple access signaling (TO-sFTN-NOMA). A conventional singular value decomposition (SVD)-based scheme for TO-sFTN-NOMA is employed as a benchmark. While this SVD scheme provides reliable communication, our findings reveal that it is not optimal in terms of bit error rate (BER) performance. Moreover, the SVD scheme is sensitive to timing offset errors, and its complexity increases quadratically with the sequence length. To overcome these limitations and improve the TO-sFTN-NOMA's performance, we propose a convolutional neural network (CNN) auto-encoder (AE) technique for encoding and decoding with linear time complexity. We explain the design of the encoder and decoder architectures and the training criteria. By considering several variants of the proposed CNN AE, we show that the proposed CNN AE can achieve an excellent trade-off between performance and complexity. The proposed CNN AE surpasses the SVD method by approximately 10 dB in a TO-sFTN-NOMA system with no timing offset errors and no channel state information (CSI) estimation errors. In the presence of CSI error with variance of 1<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> and uniform timing error at <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>4% of the symbol interval, the proposed CNN AE provides up to 16 dB SNR gain over the SVD method. We also propose a novel modified training objective function consisting of a weighted summation of the cross-entropy (CE) loss and a Q-function metric related to the BER. Simulations show that the modified objective loss function achieves SNR gains of up to 1 dB over the CE loss function alone.
AbstractList This paper presents architecture designs and performance evaluations for the encoding and decoding of transmitted and received sequences for downlink time-offset sub-faster-than-Nyquist non-orthogonal multiple access signaling (TO-sFTN-NOMA). A conventional singular value decomposition (SVD)-based scheme for TO-sFTN-NOMA is employed as a benchmark. While this SVD scheme provides reliable communication, our findings reveal that it is not optimal in terms of bit error rate (BER) performance. Moreover, the SVD scheme is sensitive to timing offset errors, and its complexity increases quadratically with the sequence length. To overcome these limitations and improve the TO-sFTN-NOMA's performance, we propose a convolutional neural network (CNN) auto-encoder (AE) technique for encoding and decoding with linear time complexity. We explain the design of the encoder and decoder architectures and the training criteria. By considering several variants of the proposed CNN AE, we show that the proposed CNN AE can achieve an excellent trade-off between performance and complexity. The proposed CNN AE surpasses the SVD method by approximately 10 dB in a TO-sFTN-NOMA system with no timing offset errors and no channel state information (CSI) estimation errors. In the presence of CSI error with variance of 1<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> and uniform timing error at <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>4% of the symbol interval, the proposed CNN AE provides up to 16 dB SNR gain over the SVD method. We also propose a novel modified training objective function consisting of a weighted summation of the cross-entropy (CE) loss and a Q-function metric related to the BER. Simulations show that the modified objective loss function achieves SNR gains of up to 1 dB over the CE loss function alone.
This paper presents architecture designs and performance evaluations for the encoding and decoding of transmitted and received sequences for downlink time-offset sub-faster-than-Nyquist non-orthogonal multiple access signaling (TO-sFTN-NOMA). A conventional singular value decomposition (SVD)-based scheme for TO-sFTN-NOMA is employed as a benchmark. While this SVD scheme provides reliable communication, our findings reveal that it is not optimal in terms of bit error rate (BER) performance. Moreover, the SVD scheme is sensitive to timing offset errors, and its complexity increases quadratically with the sequence length. To overcome these limitations and improve the TO-sFTN-NOMA's performance, we propose a convolutional neural network (CNN) auto-encoder (AE) technique for encoding and decoding with linear time complexity. We explain the design of the encoder and decoder architectures and the training criteria. By considering several variants of the proposed CNN AE, we show that the proposed CNN AE can achieve an excellent trade-off between performance and complexity. The proposed CNN AE surpasses the SVD method by approximately 10 dB in a TO-sFTN-NOMA system with no timing offset errors and no channel state information (CSI) estimation errors. In the presence of CSI error with variance of 1[Formula Omitted] and uniform timing error at [Formula Omitted]4% of the symbol interval, the proposed CNN AE provides up to 16 dB SNR gain over the SVD method. We also propose a novel modified training objective function consisting of a weighted summation of the cross-entropy (CE) loss and a Q-function metric related to the BER. Simulations show that the modified objective loss function achieves SNR gains of up to 1 dB over the CE loss function alone.
Author Sivakumar, Krishnamoorthy
Torabi, Mohammad
Belzer, Benjamin
Aboutaleb, Ahmed
Author_xml – sequence: 1
  givenname: Ahmed
  orcidid: 0000-0003-0791-7762
  surname: Aboutaleb
  fullname: Aboutaleb, Ahmed
  organization: Marvell Technology Inc., Santa Clara, CA, USA
– sequence: 2
  givenname: Mohammad
  surname: Torabi
  fullname: Torabi, Mohammad
  organization: School of EECS, Washington State University, Pullman, WA, USA
– sequence: 3
  givenname: Benjamin
  orcidid: 0000-0001-9419-9281
  surname: Belzer
  fullname: Belzer, Benjamin
  email: belzer@wsu.edu
  organization: School of EECS, Washington State University, Pullman, WA, USA
– sequence: 4
  givenname: Krishnamoorthy
  orcidid: 0000-0002-4026-7768
  surname: Sivakumar
  fullname: Sivakumar, Krishnamoorthy
  organization: School of EECS, Washington State University, Pullman, WA, USA
BookMark eNpNkLFOwzAQhi0EEhR4AcRgidnFjp04HktpoahQpBYxRo5zhkBrt3YiVPHyNJSB6W74v_90Xw8dOu8AoQtG-4xRdf0wX8yf-wlNRJ-LVFImDtAJU4IRKnJx2O08ISJN-THqxfhBaSozJk7Q9y3AGk9BB1e7N3KjI1R40DaejJzxFQRsfcCLegVkZm2EBs_bkox1bCCQxbt25Gm7aevY4Fv_5Za1-8RPs8cBfq2b9w7bleJRCD5ErF2FJ6s1BAumwcP55AwdWb2McP43T9HLeLQY3pPp7G4yHEyJSYRsCLOlMKAoq1RSSZobqm1pSqFz4FIom1MmpRGKGilsKri0eQZJlRmelt2X_BRd7XvXwW9aiE3x4dvgdicLztKcqTzn2S6V7FMm-BgD2GId6pUO24LRopNc_EouOsnFn-QddLmHagD4B2RS0VTxH62XeeI
CODEN IJSTGY
Cites_doi 10.1109/LWC.2022.3164979
10.1109/TCCN.2021.3130308
10.1109/GLOCOMW.2018.8644090
10.1109/WCNC.2019.8886124
10.1109/JIOT.2021.3051603
10.1109/LCOMM.2015.2424423
10.1109/GLOBECOM48099.2022.10001617
10.1109/jstsp.2024.3457014
10.1007/978-3-319-92090-0_5
10.1109/TCCN.2017.2758370
10.1109/JRPROC.1959.287136
10.1109/JPROC.2012.2233451
10.1109/JSYST.2019.2937463
10.1109/ISPACS.2013.6704653
10.1109/LSP.2020.3005051
10.1109/MWC.2019.1800598
10.1109/VTCSpring.2013.6692652
10.1109/TWC.2019.2963185
10.1109/ICCV.2019.00140
10.1115/1.3138251
10.1109/LCOMM.2016.2619339
10.1002/047174882X
10.1109/LCOMM.2023.3338475
10.1109/JSAC.2017.2725519
10.1109/WCNC55385.2023.10118621
10.5555/3045118.3045167
10.1109/LWC.2020.3026700
10.1109/TWC.2021.3058405
10.1109/LWC.2022.3163810
10.1109/TVT.2017.2689000
10.1109/TVT.2022.3193201
10.1109/LCOMM.2023.3260881
10.1109/LCOMM.2020.3038951
10.1007/978-3-319-92090-0
10.1002/aic.690370209
10.1109/ICC45855.2022.9838265
10.1109/SARNOF.2006.4534773
10.1109/QBSC.2012.6221379
10.1109/TVT.2018.2848294
10.1109/JSTSP.2019.2899731
10.1109/MCOM.2017.1601065
10.1109/TCOMM.2016.2521821
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
H8D
L7M
DOI 10.1109/JSTSP.2024.3457014
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1941-0484
EndPage 1193
ExternalDocumentID 10_1109_JSTSP_2024_3457014
10679059
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation; US NSF
  grantid: CCF-1817083
  funderid: 10.13039/100000001
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
H8D
L7M
ID FETCH-LOGICAL-c247t-1fb4ce901d92d708c0afbcb4a8e3749f80177c490c74f5437f86e2d6c35b57613
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001403223000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-4553
IngestDate Tue Jul 22 18:40:47 EDT 2025
Sat Nov 29 04:10:35 EST 2025
Wed Aug 27 01:53:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-1fb4ce901d92d708c0afbcb4a8e3749f80177c490c74f5437f86e2d6c35b57613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4026-7768
0000-0003-0791-7762
0000-0001-9419-9281
PQID 3158198836
PQPubID 75721
PageCount 16
ParticipantIDs crossref_primary_10_1109_JSTSP_2024_3457014
ieee_primary_10679059
proquest_journals_3158198836
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of selected topics in signal processing
PublicationTitleAbbrev JSTSP
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
Proakis (ref46) 2007
ref24
ref23
ref45
ref26
Menon (ref39) 2019; 32
ref25
ref47
ref20
Klambauer (ref35) 2017
ref41
ref22
ref44
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
Kingma (ref42) 2015
ref5
ref40
Bergstra (ref43) 2013
References_xml – ident: ref30
  doi: 10.1109/LWC.2022.3164979
– ident: ref31
  doi: 10.1109/TCCN.2021.3130308
– ident: ref26
  doi: 10.1109/GLOCOMW.2018.8644090
– ident: ref11
  doi: 10.1109/WCNC.2019.8886124
– volume-title: Digital Communications
  year: 2007
  ident: ref46
– volume: 32
  start-page: 10600
  year: 2019
  ident: ref39
  article-title: Multilabel reductions: What is my loss optimising?
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref16
  doi: 10.1109/JIOT.2021.3051603
– ident: ref40
  doi: 10.1109/LCOMM.2015.2424423
– ident: ref19
  doi: 10.1109/GLOBECOM48099.2022.10001617
– ident: ref34
  doi: 10.1109/jstsp.2024.3457014
– ident: ref3
  doi: 10.1007/978-3-319-92090-0_5
– ident: ref21
  doi: 10.1109/TCCN.2017.2758370
– ident: ref37
  doi: 10.1109/JRPROC.1959.287136
– ident: ref9
  doi: 10.1109/JPROC.2012.2233451
– ident: ref25
  doi: 10.1109/JSYST.2019.2937463
– ident: ref12
  doi: 10.1109/ISPACS.2013.6704653
– ident: ref44
  doi: 10.1109/LSP.2020.3005051
– ident: ref14
  doi: 10.1109/MWC.2019.1800598
– ident: ref1
  doi: 10.1109/VTCSpring.2013.6692652
– ident: ref27
  doi: 10.1109/TWC.2019.2963185
– ident: ref38
  doi: 10.1109/ICCV.2019.00140
– ident: ref47
  doi: 10.1115/1.3138251
– ident: ref18
  doi: 10.1109/LCOMM.2016.2619339
– ident: ref10
  doi: 10.1002/047174882X
– ident: ref32
  doi: 10.1109/LCOMM.2023.3338475
– ident: ref7
  doi: 10.1109/JSAC.2017.2725519
– ident: ref33
  doi: 10.1109/WCNC55385.2023.10118621
– ident: ref36
  doi: 10.5555/3045118.3045167
– ident: ref15
  doi: 10.1109/LWC.2020.3026700
– ident: ref17
  doi: 10.1109/TWC.2021.3058405
– ident: ref28
  doi: 10.1109/LWC.2022.3163810
– start-page: 115
  volume-title: Proc. 30th Int. Conf. Mach. Learn.
  year: 2013
  ident: ref43
  article-title: Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
– start-page: 971
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref35
  article-title: Self-normalizing neural networks
– ident: ref45
  doi: 10.1109/TVT.2017.2689000
– ident: ref23
  doi: 10.1109/TVT.2022.3193201
– ident: ref29
  doi: 10.1109/LCOMM.2023.3260881
– ident: ref41
  doi: 10.1109/LCOMM.2020.3038951
– start-page: 1
  volume-title: Proc. 3rd Int. Conf. Learn. Representations
  year: 2015
  ident: ref42
  article-title: Adam: A method for stochastic optimization
– ident: ref4
  doi: 10.1007/978-3-319-92090-0
– ident: ref20
  doi: 10.1002/aic.690370209
– ident: ref22
  doi: 10.1109/ICC45855.2022.9838265
– ident: ref5
  doi: 10.1109/SARNOF.2006.4534773
– ident: ref8
  doi: 10.1109/QBSC.2012.6221379
– ident: ref24
  doi: 10.1109/TVT.2018.2848294
– ident: ref13
  doi: 10.1109/JSTSP.2019.2899731
– ident: ref2
  doi: 10.1109/MCOM.2017.1601065
– ident: ref6
  doi: 10.1109/TCOMM.2016.2521821
SSID ssj0057614
Score 2.4181
Snippet This paper presents architecture designs and performance evaluations for the encoding and decoding of transmitted and received sequences for downlink...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1178
SubjectTerms Architecture
Artificial neural networks
Asynchronous transmission
auto-encoder
Autoencoders
Bit error rate
Coders
Coding
Complexity
Convolutional neural networks
Decoding
Deep learning
Downlink
Downlinking
faster-than Nyquist signaling
Interference cancellation
Machine learning
Neural networks
NOMA
non-orthogonal multiple access
Nonorthogonal multiple access
Performance evaluation
Singular value decomposition
Symbols
Timing
Title Deep Learning-Based Auto-Encoder for Time-Offset Sub-Faster-Than-Nyquist Downlink NOMA With Timing Errors and Imperfect CSI
URI https://ieeexplore.ieee.org/document/10679059
https://www.proquest.com/docview/3158198836
Volume 18
WOSCitedRecordID wos001403223000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057614
  issn: 1932-4553
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYAMcDAG1Fe8sCGDElsx_ZYoBWVoCDx3CLHD9olLWmKhPjz2E4qFSEGlihDbEV3l7vvcvedATjhUhKpqEBE5zkizFrEBdPuomzCZIJpOL7t-Yb1-_z1Vdw3ZPXAhTHGhOYzc-ZvQy1fj9TU_yo79-POhMMDi2CRsbQma83crsPNcVNCThChFM8YMpE4dzb-cO9ywYScYUJZFJMfUSgcq_LLF4cA013_56ttgLUGScJ2rfpNsGCKLbA6N19wG3xdGTOGzQjVN3ThIpaG7Wk1Qp3Cc9lL6CAr9CwQdGftxFTQ-RHUlX54AnocyAL1P9-nzhDglZ-p79JW2L-7bcOXYTXwy9ymsFOWo3ICZaFhz0Hw0reHwMuH3g546nYeL69Rc9oCUglhFYptTpRx8ECLRLOIq0jaXOVEcoMZEdaFMsYUEZFixFKCmeWpSXSqMM298PEuWCpGhdkDUBsH5CTVyjBOsE5lJKPExFT5sh-1tAVOZ9LPxvVQjSwkI5HIgq4yr6us0VUL7Hh5zz1Zi7oFDmcay5oPb5LhmDqMwzlO9_9YdgBW_O51Q94hWKrKqTkCy-qjGk7K42BT34OLyVw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQQIOPItYKOADN-TW8WNtH5d2V12xTSt1gd4ix4-2l2zJZpEQfx7byUpFiAOXKIc4iWYmM99k5hsDfFDGcGOFxtzVNeYyBKy0dPFgA5WGMpG3b_u6kGWpLi702UBWz1wY731uPvP76TTX8t3KbtKvsoM07kxHPHAX7gnOKenpWlvHG5FzMRSRKeZCsC1HhuiDaOXnZzEbpHyfcSFJwf-IQ3ljlb-8cQ4xsyf_-XJP4fGAJdGkV_4zuOOb5_Do1oTBF_DryPsbNAxRvcSfYsxyaLLpVnjaJDZ7iyJoRYkHgk9DWPsORU-CZyaNT8DLK9Pg8uf3TTQFdJSm6sfEFZWnJxP07bq7SsviTdG0bVftGpnGoXkE4W1qEEGH5_Nd-DKbLg-P8bDfAraUyw4XoebWR4DgNHWSKEtMqG3NjfJMch1iMJPSck2s5EFwJoMae-rGlok6CZ-9hJ1m1fhXgJyPUM4IZ71UnLmxIYZQXwibCn8iiBF83Eq_uunHalQ5HSG6yrqqkq6qQVcj2E3yvnVlL-oR7G01Vg2f3rpihYgoRyk2fv2PZe_hwfHyZFEt5uXnN_AwPalvz9uDna7d-Ldw3_7ortftu2xfvwEoZMyj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Auto-Encoder+for+Time-Offset+Sub-Faster-Than-Nyquist+Downlink+NOMA+With+Timing+Errors+and+Imperfect+CSI&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Aboutaleb%2C+Ahmed&rft.au=Torabi%2C+Mohammad&rft.au=Belzer%2C+Benjamin&rft.au=Sivakumar%2C+Krishnamoorthy&rft.date=2024-10-01&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=18&rft.issue=7&rft.spage=1178&rft.epage=1193&rft_id=info:doi/10.1109%2FJSTSP.2024.3457014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTSP_2024_3457014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon