Bearing Remaining Useful Life Prediction Based on CICAE and ResConv1D-LSTM

Bearings play a critical role in industrial machinery, and accurate predictions of the remaining useful life (RUL) of bearings are essential for ensuring the safe operation of rotating equipment. However, traditional autoencoders and CNN-based approaches tend to assign equal weights to all feature c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement Jg. 74; S. 1
Hauptverfasser: Qin, Yi, Zhao, Yihang, Zhuo, Yi'an, Chai, Yi, Yang, Zhenli, Mao, Yongfang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9456, 1557-9662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Bearings play a critical role in industrial machinery, and accurate predictions of the remaining useful life (RUL) of bearings are essential for ensuring the safe operation of rotating equipment. However, traditional autoencoders and CNN-based approaches tend to assign equal weights to all feature channels for degradation feature extraction, which inevitably leads to the critical degradation characteristics being obscured by noise or characteristics of other channels. Moreover, the additive operation of traditional residual connection inherently limits the inter-block coordination, leading to redundant feature learning and constrained hierarchical representation capacity. To address these limitations, a novel two-stage deep learning framework is proposed. In the first stage, a Channel-information-constrained autoencoder (CICAE) develops an information entropy-based constraint to focus on the degradation-relevant channels while suppressing irrelevant ones. In the second stage, a ResConv1D-LSTM network integrates multi-scale convolutional blocks for progressive residual learning with several LSTM layers for temporal modeling, so as to comprehensively characterize the degradation trend, and then multiple fully connected layers are designed for RUL prediction. Experimental results demonstrate that the proposed bearing RUL prediction method outperforms existing approaches and is applicable in real-world scenarios.
AbstractList Bearings play a critical role in industrial machinery, and accurate predictions of the remaining useful life (RUL) of bearings are essential for ensuring the safe operation of rotating equipment. However, traditional autoencoders (AEs) and CNN-based approaches tend to assign equal weights to all feature channels for degradation feature extraction, which inevitably leads to the critical degradation characteristics being obscured by noise or characteristics of other channels. Moreover, the additive operation of traditional residual connection inherently limits the interblock coordination, leading to redundant feature learning and constrained hierarchical representation capacity. To address these limitations, a novel two-stage deep learning framework is proposed. In the first stage, a channel-information-constrained AE (CICAE) develops an information entropy-based constraint to focus on the degradation-relevant channels while suppressing irrelevant ones. In the second stage, a ResConv1D-LSTM network integrates multiscale convolutional blocks for progressive residual learning with several long short-term memory (LSTM) layers for temporal modeling, so as to comprehensively characterize the degradation trend, and then, multiple fully connected layers are designed for RUL prediction. Experimental results demonstrate that the proposed bearing RUL prediction method outperforms the existing approaches and is applicable in real-world scenarios.
Bearings play a critical role in industrial machinery, and accurate predictions of the remaining useful life (RUL) of bearings are essential for ensuring the safe operation of rotating equipment. However, traditional autoencoders and CNN-based approaches tend to assign equal weights to all feature channels for degradation feature extraction, which inevitably leads to the critical degradation characteristics being obscured by noise or characteristics of other channels. Moreover, the additive operation of traditional residual connection inherently limits the inter-block coordination, leading to redundant feature learning and constrained hierarchical representation capacity. To address these limitations, a novel two-stage deep learning framework is proposed. In the first stage, a Channel-information-constrained autoencoder (CICAE) develops an information entropy-based constraint to focus on the degradation-relevant channels while suppressing irrelevant ones. In the second stage, a ResConv1D-LSTM network integrates multi-scale convolutional blocks for progressive residual learning with several LSTM layers for temporal modeling, so as to comprehensively characterize the degradation trend, and then multiple fully connected layers are designed for RUL prediction. Experimental results demonstrate that the proposed bearing RUL prediction method outperforms existing approaches and is applicable in real-world scenarios.
Author Yang, Zhenli
Chai, Yi
Zhuo, Yi'an
Qin, Yi
Zhao, Yihang
Mao, Yongfang
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0000-0002-2160-4300
  surname: Qin
  fullname: Qin, Yi
  email: qy_808@cqu.edu.cn
  organization: State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing, China
– sequence: 2
  givenname: Yihang
  orcidid: 0009-0000-5522-6013
  surname: Zhao
  fullname: Zhao, Yihang
  email: zyh0805@stu.cqu.edu.cn
  organization: State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing, China
– sequence: 3
  givenname: Yi'an
  orcidid: 0009-0008-1481-9603
  surname: Zhuo
  fullname: Zhuo, Yi'an
  email: zhuoyian_0830@163.com
  organization: CAIC Electronics Co. Ltd, Chengdu, China
– sequence: 4
  givenname: Yi
  orcidid: 0000-0002-8637-8682
  surname: Chai
  fullname: Chai, Yi
  email: chaiyi@cqu.edu.cn
  organization: College of Automation, Chongqing University, Chongqing, China
– sequence: 5
  givenname: Zhenli
  orcidid: 0000-0001-9374-7928
  surname: Yang
  fullname: Yang, Zhenli
  email: 346246866@qq.com
  organization: Key Laboratory of Electromechanical Equipment Security in Western Complex Environment, State Administration for Market Regulation, Chongqing, China
– sequence: 6
  givenname: Yongfang
  orcidid: 0000-0003-3567-1886
  surname: Mao
  fullname: Mao, Yongfang
  email: yfm@cqu.edu.cn
  organization: College of Automation, Chongqing University, Chongqing, China
BookMark eNpFkD1PwzAURS0EEm1hZ2CIxJzy_JE4GWkpUJQKBO1sOfYzStU6xW6R-PckaiWmd4d73pXOkJz71iMhNxTGlEJ5v5wvxgxYNuZZKXMGZ2RAs0ymZZ6zczIAoEVaiiy_JMMY1wAgcyEH5HWCOjT-K_nArW58n1YR3WGTVI3D5D2gbcy-aX0y0RFt0oXpfPowS7S3HROnrf-hj2n1uVxckQunNxGvT3dEVk-z5fQlrd6eO6RKDRNyn9LaFBYNWuDMoBZOY1mYTAqQ2rLSOSFMLWsuLQenrZYFE5TrGowpcmsLPiJ3x7-70H4fMO7Vuj0E300q3i0IYLLoW3BsmdDGGNCpXWi2OvwqCqo3pjpjqjemTsY65PaINIj4X6eUcSoy_gclWGfG
CODEN IEIMAO
Cites_doi 10.1109/ACCESS.2020.3041735
10.1016/j.ress.2022.108610
10.1016/j.ress.2021.107946
10.1016/j.ymssp.2023.110688
10.1177/1350650119838895
10.1016/j.measurement.2023.113478
10.1016/j.ress.2025.110978
10.1016/j.aei.2021.101247
10.1016/j.ymssp.2023.110435
10.1016/j.measurement.2022.111803
10.1109/TIM.2022.3143881
10.1016/j.ress.2023.109854
10.1109/TIM.2016.2570398
10.1109/TR.2018.2882682
10.1109/JSEN.2022.3159624
10.1016/j.aei.2020.101150
10.1016/j.ress.2025.111057
10.1109/TSMC.2024.3408058
10.1109/TII.2022.3218665
10.1016/j.measurement.2023.112600
10.1016/j.ress.2021.108140
10.1016/j.ress.2023.109716
10.1016/j.isatra.2020.12.052
10.1016/j.ymssp.2022.110010
10.1162/neco.1997.9.8.1735
10.1109/JSEN.2022.3221753
10.1016/j.isatra.2021.03.045
10.1016/j.engappai.2023.106491
10.1109/TSMC.2024.3519347
10.1109/TIM.2023.3322481
10.1016/j.ress.2022.108914
10.1016/j.ress.2021.108012
10.1016/j.jmsy.2021.03.012
10.1016/j.neucom.2015.08.104
10.1016/j.measurement.2021.109166
10.1109/TIA.2005.861365
10.1109/TIM.2021.3086906
10.1109/TIM.2021.3054025
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2025.3597620
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 1
ExternalDocumentID 10_1109_TIM_2025_3597620
11123145
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52175075
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
5VS
8WZ
A6W
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
M43
VH1
VJK
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c247t-1bc8deced032cea4fae98c57407ad29ff44cb7b37d30fada782413ab0cc86dd83
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001556060600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Sat Nov 01 14:14:38 EDT 2025
Sat Nov 29 07:39:14 EST 2025
Wed Aug 27 07:37:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-1bc8deced032cea4fae98c57407ad29ff44cb7b37d30fada782413ab0cc86dd83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-5522-6013
0000-0002-2160-4300
0009-0008-1481-9603
0000-0002-8637-8682
0000-0001-9374-7928
0000-0003-3567-1886
PQID 3247402788
PQPubID 85462
PageCount 1
ParticipantIDs ieee_primary_11123145
proquest_journals_3247402788
crossref_primary_10_1109_TIM_2025_3597620
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
Zhang (ref35) 2022
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Zhuo (ref39)
References_xml – ident: ref5
  doi: 10.1109/ACCESS.2020.3041735
– ident: ref23
  doi: 10.1016/j.ress.2022.108610
– ident: ref9
  doi: 10.1016/j.ress.2021.107946
– ident: ref30
  doi: 10.1016/j.ymssp.2023.110688
– ident: ref11
  doi: 10.1177/1350650119838895
– ident: ref15
  doi: 10.1016/j.measurement.2023.113478
– ident: ref36
  doi: 10.1016/j.ress.2025.110978
– ident: ref38
  doi: 10.1016/j.aei.2021.101247
– ident: ref3
  doi: 10.1016/j.ymssp.2023.110435
– ident: ref16
  doi: 10.1016/j.measurement.2022.111803
– ident: ref20
  doi: 10.1109/TIM.2022.3143881
– ident: ref28
  doi: 10.1016/j.ress.2023.109854
– ident: ref7
  doi: 10.1109/TIM.2016.2570398
– start-page: 1
  volume-title: Proc. CAA Symp. Fault Detection, Supervision Saf. Tech. Processes (SAFEPROCESS)
  ident: ref39
  article-title: Bearing remaining useful life prediction based on TCN-transformer model
– ident: ref40
  doi: 10.1109/TR.2018.2882682
– ident: ref10
  doi: 10.1109/JSEN.2022.3159624
– ident: ref33
  doi: 10.1016/j.aei.2020.101150
– ident: ref1
  doi: 10.1016/j.ress.2025.111057
– ident: ref6
  doi: 10.1109/TSMC.2024.3408058
– ident: ref12
  doi: 10.1109/TII.2022.3218665
– ident: ref22
  doi: 10.1016/j.measurement.2023.112600
– ident: ref2
  doi: 10.1016/j.ress.2021.108140
– ident: ref19
  doi: 10.1016/j.ress.2023.109716
– ident: ref18
  doi: 10.1016/j.isatra.2020.12.052
– ident: ref31
  doi: 10.1016/j.ymssp.2022.110010
– ident: ref34
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref27
  doi: 10.1109/JSEN.2022.3221753
– ident: ref14
  doi: 10.1016/j.isatra.2021.03.045
– ident: ref17
  doi: 10.1016/j.engappai.2023.106491
– ident: ref24
  doi: 10.1109/TSMC.2024.3519347
– ident: ref25
  doi: 10.1109/TIM.2023.3322481
– ident: ref29
  doi: 10.1016/j.ress.2022.108914
– ident: ref4
  doi: 10.1016/j.ress.2021.108012
– ident: ref13
  doi: 10.1016/j.jmsy.2021.03.012
– ident: ref32
  doi: 10.1016/j.neucom.2015.08.104
– ident: ref37
  doi: 10.1016/j.measurement.2021.109166
– ident: ref8
  doi: 10.1109/TIA.2005.861365
– year: 2022
  ident: ref35
  article-title: First de-trend then attend: Rethinking attention for time-series forecasting
  publication-title: arXiv:2212.08151
– ident: ref21
  doi: 10.1109/TIM.2021.3086906
– ident: ref26
  doi: 10.1109/TIM.2021.3054025
SSID ssj0007647
Score 2.425629
Snippet Bearings play a critical role in industrial machinery, and accurate predictions of the remaining useful life (RUL) of bearings are essential for ensuring the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Autoencoders
Bearing remaining useful life
Channels
CICAE
Computer architecture
Constraints
Convolution
Decoding
Deep learning
Degradation
Entropy (Information theory)
Feature extraction
Life prediction
Logic gates
Long short term memory
Machine learning
Predictive models
ResConv1DLSTM
RUL prediction
Training
Useful life
Title Bearing Remaining Useful Life Prediction Based on CICAE and ResConv1D-LSTM
URI https://ieeexplore.ieee.org/document/11123145
https://www.proquest.com/docview/3247402788
Volume 74
WOSCitedRecordID wos001556060600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UFPTgW1xf5ODFQ7WPtGmOWldUVll0F_ZW2mQCgnZlu-vvd5J2VRAP3kJpQphvnplkBuA05IZYl4KcNBSJx6VKvBRN5EljrZ-vA2lcdf2eeHxMRyPZbx-ru7cwiOgun-G5Hbpcvh6rmT0quyC5JHeEx4uwKETSPNb6Ursi4U2BzIAkmNyCeU7SlxeDuweKBMP4PCL3ObGtvX_YINdU5ZcmdublZuOfG9uE9daPZJcN8FuwgNU2rP2oLrgNK-52p6p34P6K-Jm-sSd8azpCsGGNZvbKei8GWX9iszUWIXZFRk0zGmR32WWXFZWmOXU2rj6Ca6_3PHjYheFNd5Ddem0TBU-FXEy9oFSpRoXaj0KFBTcFylTFggK5QofSGM5VKcpI6Mg3hS7IYyC7VpS-UmmidRrtwVI1rnAfWBlIjFRAeknZEjSlTGRgylhxHYVa-9iBszlZ8_emVkbuYgxf5gRBbiHIWwg6sGvJ-P1fS8EOHM2ByFtpqnNy-mi_IUXrB39MO4RVu3pzNnIES9PJDI9hWX1MX-rJiWOUT7UbuPg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH_aGBNw2BgroqwbPnDZITRxnA8foQPRkVYVFIlblNjPUqWRoqbl7-fZSQEJcdjNimLZer_36We_B3DMhSHWpSAn5UnsCaliL0UTetJY6-frQBpXXT9LxuP07k5O2sfq7i0MIrrLZ3hihy6Xr-dqZY_K-iSX5I6I6CN8ioTgfvNc61nxJrFoSmQGJMPkGKyzkr7sT4cjigV5dBKSAx3b5t6vrJBrq_JGFzsDc_H1P7e2C19aT5KdNtB_gw9Y7cHOq_qCe_DZ3e9U9Xf4e0YcTd_YNd43PSHYbY1m9Y9lM4NssrD5GosROyOzphkNBsPB6TkrKk1z6sG8egz-eNnNdNSB24vz6eDSa9soeIqLZOkFpUo1KtR-yBUWwhQoUxUlFMoVmktjhFBlUoaJDn1T6IJ8BrJsRekrlcZap-E-bFTzCg-AlYHEUAWkmZQtQlPKWAamjJTQIdfaxy78XpM1f2iqZeQuyvBlThDkFoK8haALHUvGl_9aCnahtwYib-Wpzsnto_1yitcP35l2BFuX01GWZ8Px1Q_Ytis1JyU92FguVvgTNtXjclYvfjmmeQKDTLw_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bearing+Remaining+Useful+Life+Prediction+Based+on+CICAE+and+ResConv1D-LSTM&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Qin%2C+Yi&rft.au=Zhao%2C+Yihang&rft.au=Yi%27An+Zhuo&rft.au=Chai%2C+Yi&rft.date=2025-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2025.3597620&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon