End-to-end protocol for high-quality quantum approximate optimization algorithm parameters with few shots

The quantum approximate optimization algorithm (QAOA) is a quantum heuristic for combinatorial optimization that has been demonstrated to scale better than state-of-the-art classical solvers for some problems. For a given problem instance, QAOA performance depends crucially on the choice of the para...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical review research Ročník 7; číslo 3; s. 033179
Hlavní autoři: Hao, Tianyi, He, Zichang, Shaydulin, Ruslan, Larson, Jeffrey, Pistoia, Marco
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Physical Society (APS) 21.08.2025
American Physical Society
Témata:
ISSN:2643-1564, 2643-1564
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The quantum approximate optimization algorithm (QAOA) is a quantum heuristic for combinatorial optimization that has been demonstrated to scale better than state-of-the-art classical solvers for some problems. For a given problem instance, QAOA performance depends crucially on the choice of the parameters. While average-case optimal parameters are available in many cases, meaningful performance gains can be obtained by fine-tuning these parameters for a given instance. This task is especially challenging, however, when the number of circuit executions (shots) is limited. In this work, we develop an end-to-end protocol that combines multiple parameter settings and fine-tuning techniques. We use large-scale numerical experiments to optimize the protocol for the shot-limited setting and observe that optimizers with the simplest internal model (linear) perform best. We implement the optimized pipeline on a trapped-ion processor using up to 32 qubits and 5 QAOA layers, and we demonstrate that the pipeline is robust to small amounts of hardware noise. To the best of our knowledge, these are the largest demonstrations of QAOA parameter fine-tuning on a trapped-ion processor in terms of two-qubit gate count.
AbstractList The quantum approximate optimization algorithm (QAOA) is a quantum heuristic for combinatorial optimization that has been demonstrated to scale better than state-of-the-art classical solvers for some problems. For a given problem instance, QAOA performance depends crucially on the choice of the parameters. While average-case optimal parameters are available in many cases, meaningful performance gains can be obtained by fine-tuning these parameters for a given instance. This task is especially challenging, however, when the number of circuit executions (shots) is limited. In this work, we develop an end-to-end protocol that combines multiple parameter settings and fine-tuning techniques. We use large-scale numerical experiments to optimize the protocol for the shot-limited setting and observe that optimizers with the simplest internal model (linear) perform best. We implement the optimized pipeline on a trapped-ion processor using up to 32 qubits and 5 QAOA layers, and we demonstrate that the pipeline is robust to small amounts of hardware noise. To the best of our knowledge, these are the largest demonstrations of QAOA parameter fine-tuning on a trapped-ion processor in terms of two-qubit gate count.
ArticleNumber 033179
Author He, Zichang
Hao, Tianyi
Larson, Jeffrey
Shaydulin, Ruslan
Pistoia, Marco
Author_xml – sequence: 1
  givenname: Tianyi
  orcidid: 0000-0003-4074-4971
  surname: Hao
  fullname: Hao, Tianyi
– sequence: 2
  givenname: Zichang
  orcidid: 0000-0002-1723-6568
  surname: He
  fullname: He, Zichang
– sequence: 3
  givenname: Ruslan
  surname: Shaydulin
  fullname: Shaydulin, Ruslan
– sequence: 4
  givenname: Jeffrey
  orcidid: 0000-0001-9924-2082
  surname: Larson
  fullname: Larson, Jeffrey
– sequence: 5
  givenname: Marco
  surname: Pistoia
  fullname: Pistoia, Marco
BackLink https://www.osti.gov/servlets/purl/2589337$$D View this record in Osti.gov
BookMark eNpNkc1q3TAUhEVJIGmaRd5AdNeFG_1ZkpclpG0gkE27Fsfyka1gW66kkCZPX9_cUrqaYfiYc2Dek5M1rUjIFWefOWfyWqhxbMxmX9-Rc6GVbHir1cl__oxclvLIGBMt58q25yTerkNTU4PrQLecavJppiFlOsVxan49wRzrC911rU8LhW1nfscFKtK01bjEV6gxrRTmMeVYp4VukGHBirnQ5z2gAZ9pmVItH8hpgLng5V-9ID-_3v64-d7cP3y7u_ly33ihTG1432qmhZYcjbECdBdaP2gEjbbX0vZojQBUQlkDurcqGKs7BkHJQQRAeUHujr1Dgke35f3b_OISRPcWpDw6yDX6GR1Iw41HhooZFTrsBt5LIUWrOyss83vXx2NXKjW64mNFP_m0ruirE63tpDQ79OkI-ZxKyRj-HeXMHXZxh13cYRf5B956g4s
Cites_doi 10.1126/sciadv.adm6761
10.4086/toc.2018.v014a015
10.22331/q-2023-03-16-949
10.1103/PhysRevX.13.041052
10.1103/PhysRevResearch.2.013056
10.1145/3678184
10.1021/acs.jctc.3c01113
10.1023/A:1017930332101
10.22331/q-2024-01-18-1231
10.1038/s41592-019-0686-2
10.1109/TQE.2024.3409309
10.1103/PhysRevA.104.L010401
10.1016/S0020-0255(00)00052-9
10.1038/s41586-023-06927-3
10.1103/PRXQuantum.5.030348
10.1103/PhysRevA.109.032408
10.1103/PhysRevX.15.021052
10.1103/PhysRevA.78.042336
10.1103/PhysRevX.13.041057
10.1145/3584706
10.1145/3338517
10.22331/q-2020-05-11-263
10.1007/s10208-021-09513-z
10.1103/PhysRevLett.101.130504
10.1109/9.119632
10.1038/s42005-024-01577-x
10.1137/15M1042425
10.1007/s101070100290
10.1145/1377612.1377613
10.1287/ijoc.2024.0578
10.1017/S0962492919000060
10.1137/1.9781611971903
10.1007/s12532-015-0084-4
10.1109/LPT.2010.2051222
10.1093/comjnl/7.4.308
10.1007/s10957-006-9101-0
10.1088/2058-9565/acef55
10.1007/s10589-016-9827-z
10.3390/a12020034
10.1038/s41567-020-01105-y
10.5281/zenodo.12209739
10.1088/2058-9565/abb6d9
10.1007/s10107-017-1141-8
ContentType Journal Article
CorporateAuthor Argonne National Laboratory (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Laboratory (ANL), Argonne, IL (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOA
DOI 10.1103/24gg-7p8z
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2643-1564
ExternalDocumentID oai_doaj_org_article_a3717ce0e4074f9e9d1b32325698280c
2589337
10_1103_24gg_7p8z
GroupedDBID 3MX
AAFWJ
AAYXX
AECSF
AFGMR
AFPKN
AGDNE
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ROL
OIOZB
OTOTI
ID FETCH-LOGICAL-c247t-1b56062631e7782a69f5cd6ea6e8b638be872ae42487a6b84f78690af43d2fae3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001555455000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2643-1564
IngestDate Fri Oct 03 12:33:59 EDT 2025
Mon Oct 20 02:24:00 EDT 2025
Mon Nov 10 02:39:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-1b56062631e7782a69f5cd6ea6e8b638be872ae42487a6b84f78690af43d2fae3
Notes AC02-06CH11357
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
ORCID 0000-0001-9924-2082
0000-0003-4074-4971
0000-0002-1723-6568
0000000340744971
0000000217236568
0000000199242082
OpenAccessLink https://doaj.org/article/a3717ce0e4074f9e9d1b32325698280c
ParticipantIDs doaj_primary_oai_doaj_org_article_a3717ce0e4074f9e9d1b32325698280c
osti_scitechconnect_2589337
crossref_primary_10_1103_24gg_7p8z
PublicationCentury 2000
PublicationDate 2025-08-21
PublicationDateYYYYMMDD 2025-08-21
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review research
PublicationYear 2025
Publisher American Physical Society (APS)
American Physical Society
Publisher_xml – name: American Physical Society (APS)
– name: American Physical Society
References 24gg-7p8zCc71R1
24gg-7p8zCc9R1
24gg-7p8zCc26R1
24gg-7p8zCc49R1
24gg-7p8zCc28R1
24gg-7p8zCc47R1
24gg-7p8zCc5R1
24gg-7p8zCc22R1
24gg-7p8zCc3R1
24gg-7p8zCc43R1
24gg-7p8zCc66R1
24gg-7p8zCc41R1
24gg-7p8zCc64R1
24gg-7p8zCc62R1
R. Shaydulin (24gg-7p8zCc19R1) 2019
J. Basso (24gg-7p8zCc14R1) 2022
P. Billingsley (24gg-7p8zCc42R1) 2017
24gg-7p8zCc18R1
24gg-7p8zCc37R1
24gg-7p8zCc56R1
24gg-7p8zCc10R1
24gg-7p8zCc35R1
24gg-7p8zCc54R1
24gg-7p8zCc52R1
D. Lykov (24gg-7p8zCc67R1) 2023
24gg-7p8zCc31R1
M. J. D. Powell (24gg-7p8zCc46R1) 2009
24gg-7p8zCc50R1
A. Bärtschi (24gg-7p8zCc44R1) 2019
24gg-7p8zCc70R1
T. Hao (24gg-7p8zCc68R1) 2023
24gg-7p8zCc8R1
C. T. Kelley (24gg-7p8zCc53R1) 2011
24gg-7p8zCc29R1
24gg-7p8zCc25R1
24gg-7p8zCc27R1
24gg-7p8zCc48R1
24gg-7p8zCc69R1
T. Hao (24gg-7p8zCc12R1) 2024
24gg-7p8zCc6R1
24gg-7p8zCc21R1
W. Lavrijsen (24gg-7p8zCc58R1) 2020
24gg-7p8zCc4R1
24gg-7p8zCc23R1
24gg-7p8zCc65R1
24gg-7p8zCc2R1
24gg-7p8zCc63R1
24gg-7p8zCc40R1
24gg-7p8zCc61R1
M. J. D. Powell (24gg-7p8zCc60R1) 2006
24gg-7p8zCc38R1
24gg-7p8zCc17R1
24gg-7p8zCc36R1
M. J. D. Powell (24gg-7p8zCc45R1) 1994
24gg-7p8zCc59R1
24gg-7p8zCc11R1
24gg-7p8zCc13R1
24gg-7p8zCc55R1
24gg-7p8zCc51R1
References_xml – ident: 24gg-7p8zCc10R1
  doi: 10.1126/sciadv.adm6761
– ident: 24gg-7p8zCc66R1
– ident: 24gg-7p8zCc2R1
  doi: 10.4086/toc.2018.v014a015
– ident: 24gg-7p8zCc31R1
  doi: 10.22331/q-2023-03-16-949
– ident: 24gg-7p8zCc21R1
  doi: 10.1103/PhysRevX.13.041052
– ident: 24gg-7p8zCc3R1
  doi: 10.1103/PhysRevResearch.2.013056
– ident: 24gg-7p8zCc18R1
  doi: 10.1145/3678184
– volume-title: High Performance Extreme Computing Conference
  year: 2019
  ident: 24gg-7p8zCc19R1
– ident: 24gg-7p8zCc36R1
  doi: 10.1021/acs.jctc.3c01113
– ident: 24gg-7p8zCc49R1
  doi: 10.1023/A:1017930332101
– ident: 24gg-7p8zCc13R1
  doi: 10.22331/q-2024-01-18-1231
– ident: 24gg-7p8zCc56R1
  doi: 10.1038/s41592-019-0686-2
– ident: 24gg-7p8zCc11R1
  doi: 10.1109/TQE.2024.3409309
– volume-title: 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022)
  year: 2022
  ident: 24gg-7p8zCc14R1
– ident: 24gg-7p8zCc41R1
  doi: 10.1103/PhysRevA.104.L010401
– ident: 24gg-7p8zCc6R1
  doi: 10.1016/S0020-0255(00)00052-9
– ident: 24gg-7p8zCc22R1
  doi: 10.1038/s41586-023-06927-3
– volume-title: Proceedings of the SC'23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, SC-W 2023
  year: 2023
  ident: 24gg-7p8zCc67R1
– ident: 24gg-7p8zCc65R1
– ident: 24gg-7p8zCc9R1
  doi: 10.1103/PRXQuantum.5.030348
– ident: 24gg-7p8zCc70R1
– ident: 24gg-7p8zCc29R1
  doi: 10.1103/PhysRevA.109.032408
– ident: 24gg-7p8zCc23R1
  doi: 10.1103/PhysRevX.15.021052
– volume-title: Proceedings of the 50th Annual International Symposium on Computer Architecture
  year: 2023
  ident: 24gg-7p8zCc68R1
– ident: 24gg-7p8zCc5R1
  doi: 10.1103/PhysRevA.78.042336
– ident: 24gg-7p8zCc63R1
  doi: 10.1103/PhysRevX.13.041057
– volume-title: Advances in Optimization and Numerical Analysis
  year: 1994
  ident: 24gg-7p8zCc45R1
– ident: 24gg-7p8zCc17R1
  doi: 10.1145/3584706
– ident: 24gg-7p8zCc55R1
  doi: 10.1145/3338517
– ident: 24gg-7p8zCc38R1
  doi: 10.22331/q-2020-05-11-263
– volume-title: 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), Montreal, QC, Canada
  year: 2024
  ident: 24gg-7p8zCc12R1
– ident: 24gg-7p8zCc69R1
– ident: 24gg-7p8zCc52R1
  doi: 10.1007/s10208-021-09513-z
– ident: 24gg-7p8zCc4R1
  doi: 10.1103/PhysRevLett.101.130504
– volume-title: Large-Scale Nonlinear Optimization
  year: 2006
  ident: 24gg-7p8zCc60R1
– ident: 24gg-7p8zCc51R1
  doi: 10.1109/9.119632
– ident: 24gg-7p8zCc40R1
  doi: 10.1038/s42005-024-01577-x
– ident: 24gg-7p8zCc28R1
  doi: 10.1137/15M1042425
– ident: 24gg-7p8zCc54R1
– ident: 24gg-7p8zCc59R1
  doi: 10.1007/s101070100290
– ident: 24gg-7p8zCc62R1
  doi: 10.1145/1377612.1377613
– ident: 24gg-7p8zCc43R1
  doi: 10.1287/ijoc.2024.0578
– ident: 24gg-7p8zCc25R1
  doi: 10.1017/S0962492919000060
– volume-title: Probability and Measure
  year: 2017
  ident: 24gg-7p8zCc42R1
– volume-title: The BOBYQA algorithm for bound constrained optimization without derivatives
  year: 2009
  ident: 24gg-7p8zCc46R1
– volume-title: International Symposium on Fundamentals of Computation Theory
  year: 2019
  ident: 24gg-7p8zCc44R1
– volume-title: Implicit Filtering
  year: 2011
  ident: 24gg-7p8zCc53R1
  doi: 10.1137/1.9781611971903
– ident: 24gg-7p8zCc61R1
  doi: 10.1007/s12532-015-0084-4
– ident: 24gg-7p8zCc48R1
  doi: 10.1109/LPT.2010.2051222
– ident: 24gg-7p8zCc47R1
  doi: 10.1093/comjnl/7.4.308
– ident: 24gg-7p8zCc50R1
  doi: 10.1007/s10957-006-9101-0
– ident: 24gg-7p8zCc37R1
  doi: 10.1088/2058-9565/acef55
– ident: 24gg-7p8zCc26R1
  doi: 10.1007/s10589-016-9827-z
– ident: 24gg-7p8zCc8R1
  doi: 10.3390/a12020034
– ident: 24gg-7p8zCc64R1
  doi: 10.1038/s41567-020-01105-y
– ident: 24gg-7p8zCc71R1
  doi: 10.5281/zenodo.12209739
– ident: 24gg-7p8zCc35R1
  doi: 10.1088/2058-9565/abb6d9
– ident: 24gg-7p8zCc27R1
  doi: 10.1007/s10107-017-1141-8
– volume-title: International Conference on Quantum Computing and Engineering
  year: 2020
  ident: 24gg-7p8zCc58R1
SSID ssj0002511485
Score 2.30071
Snippet The quantum approximate optimization algorithm (QAOA) is a quantum heuristic for combinatorial optimization that has been demonstrated to scale better than...
SourceID doaj
osti
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 033179
SubjectTerms quantum algorithms & computation
quantum computation
Title End-to-end protocol for high-quality quantum approximate optimization algorithm parameters with few shots
URI https://www.osti.gov/servlets/purl/2589337
https://doaj.org/article/a3717ce0e4074f9e9d1b32325698280c
Volume 7
WOSCitedRecordID wos001555455000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2643-1564
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511485
  issn: 2643-1564
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2643-1564
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511485
  issn: 2643-1564
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUltJBLSPpBtmmKKL2K2JJsSce27NJLQw8t7M1I8mizkLXD2kmTHPLbO2M7ZXPKpRcLjJHNjDTznhm9YeyzCsrhuqiF1EUhtAtKhKCSsCClgVzLDOzQbMKcn9vl0v3cafVFNWGjPPBouDOvkHBEyACZh04OXJ0HhTCgKB2ShSxS9M2M2yFTFIMJOGtbTFJCeabOpF6thLmy908S0KDTj0OL-2knrywO2cEECPmX8UOO2AtoXrNXQ2Fm7N6w9bypRd8KaGpOmgotOo4j0OSkMyzGI5F3HEfMHRs-KITfrhGFAm8xGGymU5bcX67a7bq_2HDS-t5QDUzH6R8sT_CHdxdt371lvxfzX9--i6k9gohSm17kAdEKicnkYDDP-9KlItYl-BJswG0VwBrpQUvkJL4MVidD7ad80qqWyYN6x_aatoFjxnXyyHxsbkxmtaOZ8mQixklQyuH0M_bp0WbV1aiCUQ3sIVMVGbYiw87YV7LmvwdIuHq4ge6sJndWz7lzxk7IFxXmfxKxjVTtE_tKFoirlHn_P15xwvYlNfHNMETkH9hev72GU_Yy3vTrbvtxWEd4_fEw_wsHSs72
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=End-to-end+protocol+for+high-quality+quantum+approximate+optimization+algorithm+parameters+with+few+shots&rft.jtitle=Physical+review+research&rft.au=Hao%2C+Tianyi&rft.au=He%2C+Zichang&rft.au=Shaydulin%2C+Ruslan&rft.au=Larson%2C+Jeffrey&rft.date=2025-08-21&rft.pub=American+Physical+Society+%28APS%29&rft.issn=2643-1564&rft.eissn=2643-1564&rft.volume=7&rft.issue=3&rft_id=info:doi/10.1103%2F24gg-7p8z&rft.externalDocID=2589337
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon