End-to-end protocol for high-quality quantum approximate optimization algorithm parameters with few shots
The quantum approximate optimization algorithm (QAOA) is a quantum heuristic for combinatorial optimization that has been demonstrated to scale better than state-of-the-art classical solvers for some problems. For a given problem instance, QAOA performance depends crucially on the choice of the para...
Saved in:
| Published in: | Physical review research Vol. 7; no. 3; p. 033179 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
American Physical Society (APS)
21.08.2025
American Physical Society |
| Subjects: | |
| ISSN: | 2643-1564, 2643-1564 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The quantum approximate optimization algorithm (QAOA) is a quantum heuristic for combinatorial optimization that has been demonstrated to scale better than state-of-the-art classical solvers for some problems. For a given problem instance, QAOA performance depends crucially on the choice of the parameters. While average-case optimal parameters are available in many cases, meaningful performance gains can be obtained by fine-tuning these parameters for a given instance. This task is especially challenging, however, when the number of circuit executions (shots) is limited. In this work, we develop an end-to-end protocol that combines multiple parameter settings and fine-tuning techniques. We use large-scale numerical experiments to optimize the protocol for the shot-limited setting and observe that optimizers with the simplest internal model (linear) perform best. We implement the optimized pipeline on a trapped-ion processor using up to 32 qubits and 5 QAOA layers, and we demonstrate that the pipeline is robust to small amounts of hardware noise. To the best of our knowledge, these are the largest demonstrations of QAOA parameter fine-tuning on a trapped-ion processor in terms of two-qubit gate count. |
|---|---|
| AbstractList | The quantum approximate optimization algorithm (QAOA) is a quantum heuristic for combinatorial optimization that has been demonstrated to scale better than state-of-the-art classical solvers for some problems. For a given problem instance, QAOA performance depends crucially on the choice of the parameters. While average-case optimal parameters are available in many cases, meaningful performance gains can be obtained by fine-tuning these parameters for a given instance. This task is especially challenging, however, when the number of circuit executions (shots) is limited. In this work, we develop an end-to-end protocol that combines multiple parameter settings and fine-tuning techniques. We use large-scale numerical experiments to optimize the protocol for the shot-limited setting and observe that optimizers with the simplest internal model (linear) perform best. We implement the optimized pipeline on a trapped-ion processor using up to 32 qubits and 5 QAOA layers, and we demonstrate that the pipeline is robust to small amounts of hardware noise. To the best of our knowledge, these are the largest demonstrations of QAOA parameter fine-tuning on a trapped-ion processor in terms of two-qubit gate count. |
| ArticleNumber | 033179 |
| Author | He, Zichang Hao, Tianyi Larson, Jeffrey Shaydulin, Ruslan Pistoia, Marco |
| Author_xml | – sequence: 1 givenname: Tianyi orcidid: 0000-0003-4074-4971 surname: Hao fullname: Hao, Tianyi – sequence: 2 givenname: Zichang orcidid: 0000-0002-1723-6568 surname: He fullname: He, Zichang – sequence: 3 givenname: Ruslan surname: Shaydulin fullname: Shaydulin, Ruslan – sequence: 4 givenname: Jeffrey orcidid: 0000-0001-9924-2082 surname: Larson fullname: Larson, Jeffrey – sequence: 5 givenname: Marco surname: Pistoia fullname: Pistoia, Marco |
| BackLink | https://www.osti.gov/servlets/purl/2589337$$D View this record in Osti.gov |
| BookMark | eNpNkc1q3TAUhEVJIGmaRd5AdNeFG_1ZkpclpG0gkE27Fsfyka1gW66kkCZPX9_cUrqaYfiYc2Dek5M1rUjIFWefOWfyWqhxbMxmX9-Rc6GVbHir1cl__oxclvLIGBMt58q25yTerkNTU4PrQLecavJppiFlOsVxan49wRzrC911rU8LhW1nfscFKtK01bjEV6gxrRTmMeVYp4VukGHBirnQ5z2gAZ9pmVItH8hpgLng5V-9ID-_3v64-d7cP3y7u_ly33ihTG1432qmhZYcjbECdBdaP2gEjbbX0vZojQBUQlkDurcqGKs7BkHJQQRAeUHujr1Dgke35f3b_OISRPcWpDw6yDX6GR1Iw41HhooZFTrsBt5LIUWrOyss83vXx2NXKjW64mNFP_m0ruirE63tpDQ79OkI-ZxKyRj-HeXMHXZxh13cYRf5B956g4s |
| Cites_doi | 10.1126/sciadv.adm6761 10.4086/toc.2018.v014a015 10.22331/q-2023-03-16-949 10.1103/PhysRevX.13.041052 10.1103/PhysRevResearch.2.013056 10.1145/3678184 10.1021/acs.jctc.3c01113 10.1023/A:1017930332101 10.22331/q-2024-01-18-1231 10.1038/s41592-019-0686-2 10.1109/TQE.2024.3409309 10.1103/PhysRevA.104.L010401 10.1016/S0020-0255(00)00052-9 10.1038/s41586-023-06927-3 10.1103/PRXQuantum.5.030348 10.1103/PhysRevA.109.032408 10.1103/PhysRevX.15.021052 10.1103/PhysRevA.78.042336 10.1103/PhysRevX.13.041057 10.1145/3584706 10.1145/3338517 10.22331/q-2020-05-11-263 10.1007/s10208-021-09513-z 10.1103/PhysRevLett.101.130504 10.1109/9.119632 10.1038/s42005-024-01577-x 10.1137/15M1042425 10.1007/s101070100290 10.1145/1377612.1377613 10.1287/ijoc.2024.0578 10.1017/S0962492919000060 10.1137/1.9781611971903 10.1007/s12532-015-0084-4 10.1109/LPT.2010.2051222 10.1093/comjnl/7.4.308 10.1007/s10957-006-9101-0 10.1088/2058-9565/acef55 10.1007/s10589-016-9827-z 10.3390/a12020034 10.1038/s41567-020-01105-y 10.5281/zenodo.12209739 10.1088/2058-9565/abb6d9 10.1007/s10107-017-1141-8 |
| ContentType | Journal Article |
| CorporateAuthor | Argonne National Laboratory (ANL), Argonne, IL (United States) |
| CorporateAuthor_xml | – name: Argonne National Laboratory (ANL), Argonne, IL (United States) |
| DBID | AAYXX CITATION OIOZB OTOTI DOA |
| DOI | 10.1103/24gg-7p8z |
| DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2643-1564 |
| ExternalDocumentID | oai_doaj_org_article_a3717ce0e4074f9e9d1b32325698280c 2589337 10_1103_24gg_7p8z |
| GroupedDBID | 3MX AAFWJ AAYXX AECSF AFGMR AFPKN AGDNE ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E ROL OIOZB OTOTI |
| ID | FETCH-LOGICAL-c247t-1b56062631e7782a69f5cd6ea6e8b638be872ae42487a6b84f78690af43d2fae3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001555455000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2643-1564 |
| IngestDate | Fri Oct 03 12:33:59 EDT 2025 Mon Oct 20 02:24:00 EDT 2025 Mon Nov 10 02:39:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c247t-1b56062631e7782a69f5cd6ea6e8b638be872ae42487a6b84f78690af43d2fae3 |
| Notes | AC02-06CH11357 USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) |
| ORCID | 0000-0001-9924-2082 0000-0003-4074-4971 0000-0002-1723-6568 0000000340744971 0000000217236568 0000000199242082 |
| OpenAccessLink | https://doaj.org/article/a3717ce0e4074f9e9d1b32325698280c |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a3717ce0e4074f9e9d1b32325698280c osti_scitechconnect_2589337 crossref_primary_10_1103_24gg_7p8z |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-21 |
| PublicationDateYYYYMMDD | 2025-08-21 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Physical review research |
| PublicationYear | 2025 |
| Publisher | American Physical Society (APS) American Physical Society |
| Publisher_xml | – name: American Physical Society (APS) – name: American Physical Society |
| References | 24gg-7p8zCc71R1 24gg-7p8zCc9R1 24gg-7p8zCc26R1 24gg-7p8zCc49R1 24gg-7p8zCc28R1 24gg-7p8zCc47R1 24gg-7p8zCc5R1 24gg-7p8zCc22R1 24gg-7p8zCc3R1 24gg-7p8zCc43R1 24gg-7p8zCc66R1 24gg-7p8zCc41R1 24gg-7p8zCc64R1 24gg-7p8zCc62R1 R. Shaydulin (24gg-7p8zCc19R1) 2019 J. Basso (24gg-7p8zCc14R1) 2022 P. Billingsley (24gg-7p8zCc42R1) 2017 24gg-7p8zCc18R1 24gg-7p8zCc37R1 24gg-7p8zCc56R1 24gg-7p8zCc10R1 24gg-7p8zCc35R1 24gg-7p8zCc54R1 24gg-7p8zCc52R1 D. Lykov (24gg-7p8zCc67R1) 2023 24gg-7p8zCc31R1 M. J. D. Powell (24gg-7p8zCc46R1) 2009 24gg-7p8zCc50R1 A. Bärtschi (24gg-7p8zCc44R1) 2019 24gg-7p8zCc70R1 T. Hao (24gg-7p8zCc68R1) 2023 24gg-7p8zCc8R1 C. T. Kelley (24gg-7p8zCc53R1) 2011 24gg-7p8zCc29R1 24gg-7p8zCc25R1 24gg-7p8zCc27R1 24gg-7p8zCc48R1 24gg-7p8zCc69R1 T. Hao (24gg-7p8zCc12R1) 2024 24gg-7p8zCc6R1 24gg-7p8zCc21R1 W. Lavrijsen (24gg-7p8zCc58R1) 2020 24gg-7p8zCc4R1 24gg-7p8zCc23R1 24gg-7p8zCc65R1 24gg-7p8zCc2R1 24gg-7p8zCc63R1 24gg-7p8zCc40R1 24gg-7p8zCc61R1 M. J. D. Powell (24gg-7p8zCc60R1) 2006 24gg-7p8zCc38R1 24gg-7p8zCc17R1 24gg-7p8zCc36R1 M. J. D. Powell (24gg-7p8zCc45R1) 1994 24gg-7p8zCc59R1 24gg-7p8zCc11R1 24gg-7p8zCc13R1 24gg-7p8zCc55R1 24gg-7p8zCc51R1 |
| References_xml | – ident: 24gg-7p8zCc10R1 doi: 10.1126/sciadv.adm6761 – ident: 24gg-7p8zCc66R1 – ident: 24gg-7p8zCc2R1 doi: 10.4086/toc.2018.v014a015 – ident: 24gg-7p8zCc31R1 doi: 10.22331/q-2023-03-16-949 – ident: 24gg-7p8zCc21R1 doi: 10.1103/PhysRevX.13.041052 – ident: 24gg-7p8zCc3R1 doi: 10.1103/PhysRevResearch.2.013056 – ident: 24gg-7p8zCc18R1 doi: 10.1145/3678184 – volume-title: High Performance Extreme Computing Conference year: 2019 ident: 24gg-7p8zCc19R1 – ident: 24gg-7p8zCc36R1 doi: 10.1021/acs.jctc.3c01113 – ident: 24gg-7p8zCc49R1 doi: 10.1023/A:1017930332101 – ident: 24gg-7p8zCc13R1 doi: 10.22331/q-2024-01-18-1231 – ident: 24gg-7p8zCc56R1 doi: 10.1038/s41592-019-0686-2 – ident: 24gg-7p8zCc11R1 doi: 10.1109/TQE.2024.3409309 – volume-title: 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022) year: 2022 ident: 24gg-7p8zCc14R1 – ident: 24gg-7p8zCc41R1 doi: 10.1103/PhysRevA.104.L010401 – ident: 24gg-7p8zCc6R1 doi: 10.1016/S0020-0255(00)00052-9 – ident: 24gg-7p8zCc22R1 doi: 10.1038/s41586-023-06927-3 – volume-title: Proceedings of the SC'23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, SC-W 2023 year: 2023 ident: 24gg-7p8zCc67R1 – ident: 24gg-7p8zCc65R1 – ident: 24gg-7p8zCc9R1 doi: 10.1103/PRXQuantum.5.030348 – ident: 24gg-7p8zCc70R1 – ident: 24gg-7p8zCc29R1 doi: 10.1103/PhysRevA.109.032408 – ident: 24gg-7p8zCc23R1 doi: 10.1103/PhysRevX.15.021052 – volume-title: Proceedings of the 50th Annual International Symposium on Computer Architecture year: 2023 ident: 24gg-7p8zCc68R1 – ident: 24gg-7p8zCc5R1 doi: 10.1103/PhysRevA.78.042336 – ident: 24gg-7p8zCc63R1 doi: 10.1103/PhysRevX.13.041057 – volume-title: Advances in Optimization and Numerical Analysis year: 1994 ident: 24gg-7p8zCc45R1 – ident: 24gg-7p8zCc17R1 doi: 10.1145/3584706 – ident: 24gg-7p8zCc55R1 doi: 10.1145/3338517 – ident: 24gg-7p8zCc38R1 doi: 10.22331/q-2020-05-11-263 – volume-title: 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), Montreal, QC, Canada year: 2024 ident: 24gg-7p8zCc12R1 – ident: 24gg-7p8zCc69R1 – ident: 24gg-7p8zCc52R1 doi: 10.1007/s10208-021-09513-z – ident: 24gg-7p8zCc4R1 doi: 10.1103/PhysRevLett.101.130504 – volume-title: Large-Scale Nonlinear Optimization year: 2006 ident: 24gg-7p8zCc60R1 – ident: 24gg-7p8zCc51R1 doi: 10.1109/9.119632 – ident: 24gg-7p8zCc40R1 doi: 10.1038/s42005-024-01577-x – ident: 24gg-7p8zCc28R1 doi: 10.1137/15M1042425 – ident: 24gg-7p8zCc54R1 – ident: 24gg-7p8zCc59R1 doi: 10.1007/s101070100290 – ident: 24gg-7p8zCc62R1 doi: 10.1145/1377612.1377613 – ident: 24gg-7p8zCc43R1 doi: 10.1287/ijoc.2024.0578 – ident: 24gg-7p8zCc25R1 doi: 10.1017/S0962492919000060 – volume-title: Probability and Measure year: 2017 ident: 24gg-7p8zCc42R1 – volume-title: The BOBYQA algorithm for bound constrained optimization without derivatives year: 2009 ident: 24gg-7p8zCc46R1 – volume-title: International Symposium on Fundamentals of Computation Theory year: 2019 ident: 24gg-7p8zCc44R1 – volume-title: Implicit Filtering year: 2011 ident: 24gg-7p8zCc53R1 doi: 10.1137/1.9781611971903 – ident: 24gg-7p8zCc61R1 doi: 10.1007/s12532-015-0084-4 – ident: 24gg-7p8zCc48R1 doi: 10.1109/LPT.2010.2051222 – ident: 24gg-7p8zCc47R1 doi: 10.1093/comjnl/7.4.308 – ident: 24gg-7p8zCc50R1 doi: 10.1007/s10957-006-9101-0 – ident: 24gg-7p8zCc37R1 doi: 10.1088/2058-9565/acef55 – ident: 24gg-7p8zCc26R1 doi: 10.1007/s10589-016-9827-z – ident: 24gg-7p8zCc8R1 doi: 10.3390/a12020034 – ident: 24gg-7p8zCc64R1 doi: 10.1038/s41567-020-01105-y – ident: 24gg-7p8zCc71R1 doi: 10.5281/zenodo.12209739 – ident: 24gg-7p8zCc35R1 doi: 10.1088/2058-9565/abb6d9 – ident: 24gg-7p8zCc27R1 doi: 10.1007/s10107-017-1141-8 – volume-title: International Conference on Quantum Computing and Engineering year: 2020 ident: 24gg-7p8zCc58R1 |
| SSID | ssj0002511485 |
| Score | 2.30071 |
| Snippet | The quantum approximate optimization algorithm (QAOA) is a quantum heuristic for combinatorial optimization that has been demonstrated to scale better than... |
| SourceID | doaj osti crossref |
| SourceType | Open Website Open Access Repository Index Database |
| StartPage | 033179 |
| SubjectTerms | quantum algorithms & computation quantum computation |
| Title | End-to-end protocol for high-quality quantum approximate optimization algorithm parameters with few shots |
| URI | https://www.osti.gov/servlets/purl/2589337 https://doaj.org/article/a3717ce0e4074f9e9d1b32325698280c |
| Volume | 7 |
| WOSCitedRecordID | wos001555455000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2643-1564 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511485 issn: 2643-1564 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2643-1564 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511485 issn: 2643-1564 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG5CMOBF4gvXaGiC1ybTj-nHUWWDBw05JJLb0M_NgjsTdkaNHvztqZoZZT158TINQ8M0VdNV39dUf0XImxRs0slypqVUTAVemHeFsxwSF1oUbcf-KZ8_mvNze33tLnZafWFN2CQPPBnu1EsgHDFXGZiHKi67xIMEGFBrB2Shihh9K-N2yBTGYATOytazlBCv5KlQqxUzt_bnXwlo1OmHoYP9tJNXzg7JoxkQ0rfTQh6Tvdw-IQdjYWbsn5L1sk1s6FhuE0VNhQ4cRwFoUtQZZtOVyB8URsgdGzoqhN-tAYVm2kEw2My3LKn_suq26-FmQ1Hre4M1MD3FM1ha8nfa33RD_4xcnS0v339gc3sEFoUyA-MB0AqKyfBsIM977Uodk85eZxtgW4VsjfBZCeAkXgerisH2U74omUTxWT4n-23X5heERge8yppYAc-G-cnVAWCF4cElq6QtC3Ly22bN7aSC0YzsoZINGrZBwy7IO7TmnwkoXD2-AHc2szubf7lzQY7QFw3kfxSxjVjtE4dG1ICrpHn5Pz5xRB4KbOJbQYjgr8j-sP2aX5MH8duw7rfH438Ez0-_lvettc-g |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=End-to-end+protocol+for+high-quality+quantum+approximate+optimization+algorithm+parameters+with+few+shots&rft.jtitle=Physical+review+research&rft.au=Hao%2C+Tianyi&rft.au=He%2C+Zichang&rft.au=Shaydulin%2C+Ruslan&rft.au=Larson%2C+Jeffrey&rft.date=2025-08-21&rft.issn=2643-1564&rft.eissn=2643-1564&rft.volume=7&rft.issue=3&rft_id=info:doi/10.1103%2F24gg-7p8z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_24gg_7p8z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon |