Scheduling Scientific Workflow Applications with Deadline and Budget Constraints Using Genetic Algorithms

Grid technologies have progressed towards a service‐oriented paradigm that enables a new way of service provisioning based on utility computing models, which are capable of supporting diverse computing services. It facilitates scientific applications to take advantage of computing resources distribu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific programming Jg. 14; H. 3-4; S. 217 - 230
Hauptverfasser: Yu, Jia, Buyya, Rajkumar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.01.2006
ISSN:1058-9244, 1875-919X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Grid technologies have progressed towards a service‐oriented paradigm that enables a new way of service provisioning based on utility computing models, which are capable of supporting diverse computing services. It facilitates scientific applications to take advantage of computing resources distributed world wide to enhance the capability and performance. Many scientific applications in areas such as bioinformatics and astronomy require workflow processing in which tasks are executed based on their control or data dependencies. Scheduling such interdependent tasks on utility Grid environments need to consider users′ QoS requirements. In this paper, we present a genetic algorithm approach to address scheduling optimization problems in workflow applications, based on two QoS constraints, deadline and budget.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ObjectType-Feature-1
ISSN:1058-9244
1875-919X
DOI:10.1155/2006/271608