Personalization of convolutional neural networks within the stress detection task using heart rate variability data
Stress detection is an active area of research with important implications for personal, occupational, and social health. Most modern approaches use features computed from multiple sensor modalities, i.e., grouping different types of data from multiple sources for processing. These include electroca...
Uložené v:
| Vydané v: | Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki Ročník 23; číslo 6; s. 1178 - 1186 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
ITMO University
01.12.2024
|
| Predmet: | |
| ISSN: | 2226-1494, 2500-0373 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Stress detection is an active area of research with important implications for personal, occupational, and social health. Most modern approaches use features computed from multiple sensor modalities, i.e., grouping different types of data from multiple sources for processing. These include electrocardiogram, electrodermal activity, electromyogram, skin temperature, respiration, accelerometer data, etc. Also, traditional machine learning algorithms (decision tree, discriminant analysis, support vector machine, etc.) or fully-connected neural networks are mostly used. Using these methods requires large amounts of data. Researchers are considering different approaches to personalization or generalization of models relative to subjects, namely subject-independent and subject-dependent (initially personal or adapted) models. The aim of the presented work is to develop a method for detecting stress based on heart rate variability data, taking into account the process of personalization of neural networks. The use of a convolutional neural network is proposed. The dependence of accuracy on the length of the input signal is studied. The dependence of accuracy on the data dimensionality reduction layer (one-dimensional convolutional layer, maximizing and averaging pooling) used in the network is also considered. The importance of personalizing models is demonstrated to significantly increase the accuracy of models of specific subjects. It is shown that the proposed method, based on 60 intervals between heartbeats, makes it possible to binary determine whether a person is under stress. Personalization allowed increasing the accuracy from 91.8 % to 98.9 ± 2.6 %. The F1-score value increased from 0.907 to 0.983 ± 0.038. The proposed personalized networks can be used in systems for monitoring the functional state of a person. They can also be used as part of a system that grants or restricts access to private resources based on whether a person is currently at rest. |
|---|---|
| AbstractList | Stress detection is an active area of research with important implications for personal, occupational, and social health. Most modern approaches use features computed from multiple sensor modalities, i.e., grouping different types of data from multiple sources for processing. These include electrocardiogram, electrodermal activity, electromyogram, skin temperature, respiration, accelerometer data, etc. Also, traditional machine learning algorithms (decision tree, discriminant analysis, support vector machine, etc.) or fully-connected neural networks are mostly used. Using these methods requires large amounts of data. Researchers are considering different approaches to personalization or generalization of models relative to subjects, namely subject-independent and subject-dependent (initially personal or adapted) models. The aim of the presented work is to develop a method for detecting stress based on heart rate variability data, taking into account the process of personalization of neural networks. The use of a convolutional neural network is proposed. The dependence of accuracy on the length of the input signal is studied. The dependence of accuracy on the data dimensionality reduction layer (one-dimensional convolutional layer, maximizing and averaging pooling) used in the network is also considered. The importance of personalizing models is demonstrated to significantly increase the accuracy of models of specific subjects. It is shown that the proposed method, based on 60 intervals between heartbeats, makes it possible to binary determine whether a person is under stress. Personalization allowed increasing the accuracy from 91.8 % to 98.9 ± 2.6 %. The F1-score value increased from 0.907 to 0.983 ± 0.038. The proposed personalized networks can be used in systems for monitoring the functional state of a person. They can also be used as part of a system that grants or restricts access to private resources based on whether a person is currently at rest. |
| Author | Dobrokhvalov, M.O. Filatov, A.Yu |
| Author_xml | – sequence: 1 givenname: M.O. orcidid: 0000-0002-0571-5836 surname: Dobrokhvalov fullname: Dobrokhvalov, M.O. – sequence: 2 givenname: A.Yu orcidid: 0000-0003-4298-8523 surname: Filatov fullname: Filatov, A.Yu |
| BookMark | eNo9UdtKBDEMLaLgqvsPffJttJeZXl4EWbwsCPqgzyUz0-52HafSdlf06-2sFwhJTkgOSc4JOhzDaBE6p-SCykaJS8aYqGit64oRxqtiBVKpilPiAM1YQ0hFuOSHJf_rPUbzlDaEECqLY2yG0pONKYww-C_IPow4ONyFcReG7QRhwKPdxn3IHyG-Jvzh89qPOK8tTjnalHBvs-32wxnSK94mP67w2kLMOEK2eAfRQ-sHnz9xDxnO0JGDIdn5bzxFL7c3z4v76uHxbrm4fqg6VktRtdCrTmvNnXQtkcJazlpNneDUkQJkY7VzEgTVnDtGHJ9uZtYJxmivFD9Fyx_ePsDGvEf_BvHTBPBmXwhxZcqOvhus6TgTTNFaQEfqRvVagaQCWt20dUsaXriufri6GFKK1v3zUWL2ipjpy2b6spkUMcUKLIqYSRH-DYRrgwE |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.17586/2226-1494-2023-23-6-1178-1186 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2500-0373 |
| EndPage | 1186 |
| ExternalDocumentID | oai_doaj_org_article_c32628146ac0458d98a716ab95b4b053 10_17586_2226_1494_2023_23_6_1178_1186 |
| GroupedDBID | 642 AAYXX ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BPHCQ BYOGL CITATION GROUPED_DOAJ KQ8 PIMPY PQQKQ PROAC VCL VIT |
| ID | FETCH-LOGICAL-c2476-bad8c9993f7fb076ee32b91f631f0ee375e9ff7a61933f20f325002ef6221d883 |
| IEDL.DBID | DOA |
| ISSN | 2226-1494 |
| IngestDate | Mon Nov 03 22:03:38 EST 2025 Sat Nov 29 03:57:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2476-bad8c9993f7fb076ee32b91f631f0ee375e9ff7a61933f20f325002ef6221d883 |
| ORCID | 0000-0002-0571-5836 0000-0003-4298-8523 |
| OpenAccessLink | https://doaj.org/article/c32628146ac0458d98a716ab95b4b053 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c32628146ac0458d98a716ab95b4b053 crossref_primary_10_17586_2226_1494_2023_23_6_1178_1186 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki |
| PublicationYear | 2024 |
| Publisher | ITMO University |
| Publisher_xml | – name: ITMO University |
| SSID | ssj0001700022 ssib026971427 |
| Score | 2.2824783 |
| Snippet | Stress detection is an active area of research with important implications for personal, occupational, and social health. Most modern approaches use features... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 1178 |
| SubjectTerms | вариабельность сердечного ритма детектирование стресса машинное обучение сверточные нейронные сети субъекто-зависимые модели |
| Title | Personalization of convolutional neural networks within the stress detection task using heart rate variability data |
| URI | https://doaj.org/article/c32628146ac0458d98a716ab95b4b053 |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2500-0373 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001700022 issn: 2226-1494 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07SwQxEA4iIlqITzxfpBC74OZxeZQqitVxhYJdSLKJqHCKdwr-e2c2q2xnIwSWDWQJH0Pmm-zMN4ScGmUFuOGGlchbpmxxzEalWMw6YKOHMFapazZhJhP78OCmg1ZfmBNW5YErcOcJ-IXAe6qQ8J9e62wAih-iG0cVwYLw9G2MGwRTYElCO8NVr2_5XEVi0FthpzngGwzCArVKzvDEAL6sz38nGXYTZzDglWN8xbHIeuCxBsL-nQe62SQbPXWkF3XLW2Qpz7bJ-kBQcIfMpz_culZX0tdCMa-8ty9YjfqV3aPL_p5TvId9mlGggbSWjdA2L7r0LJgM8xeKifGPFPteLyjKStBPiK6ruPcXxfzSXXJ_c313dcv6tgosCWU0i6G1CXihLKbExuicpYiOFy15aeDFjDNe5AYIraQsoikSaFIjctFC8NZauUeWZ6-zvE9odrIprTEZ6-USRHpcF-mCM1HzpHgaEfMDnX-r6hkeow4E3SPoHkH3CLqHoVF63HoEfUQuEenfVaiC3U2AbfjeNvxftnHwHx85JGuwP1VTWI7I8uL9Ix-TlfS5eJq_n3Rm9w24D9SR |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalization+of+convolutional+neural+networks+within+the+stress+detection+task+using+heart+rate+variability+data&rft.jtitle=Nauchno-tekhnicheski%C4%AD+vestnik+informat%CD%A1s%EF%B8%A1ionnykh+tekhnologi%C4%AD%2C+mekhaniki+i+optiki&rft.au=Dobrokhvalov%2C+M.O.&rft.au=Filatov%2C+A.Yu&rft.date=2024-12-01&rft.issn=2226-1494&rft.volume=23&rft.issue=6&rft.spage=1178&rft.epage=1186&rft_id=info:doi/10.17586%2F2226-1494-2023-23-6-1178-1186&rft.externalDBID=n%2Fa&rft.externalDocID=10_17586_2226_1494_2023_23_6_1178_1186 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2226-1494&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2226-1494&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2226-1494&client=summon |