Enhancing Kubernetes security with machine learning: а proactive approach to anomaly detection

Kubernetes has become a cornerstone of modern software development enabling scalable and efficient deployment of microservices. However, this scalability comes with significant security challenges, particularly in detecting specific attack types within dynamic and ephemeral environments. This study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki Jg. 24; H. 6; S. 1007 - 1015
Hauptverfasser: Darwesh, G., Hammoud, J., Vorobeva, A.A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: ITMO University 01.12.2024
Schlagworte:
ISSN:2226-1494, 2500-0373
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Kubernetes has become a cornerstone of modern software development enabling scalable and efficient deployment of microservices. However, this scalability comes with significant security challenges, particularly in detecting specific attack types within dynamic and ephemeral environments. This study presents a focused application of Machine Learning (ML) techniques to enhance security in Kubernetes by detecting Denial of Service (DoS) attacks and differentiating between DoS attacks, resource overload caused by attacks, and natural resource overloads. We developed a custom monitoring agent that collects telemetry data from various sources, including real-world workloads, actual attack scenarios, simulated hacking attempts, and induced overloading on containers and pods, ensuring comprehensive coverage. The dataset comprising these diverse sources was meticulously labeled and preprocessed, including normalization and temporal analysis. We employed and evaluated various ML classifiers, with Random Forest and AdaBoost emerging as the top performers, achieving F1 macro scores of 0.9990 ± 0.0006 and 0.9990 ± 0.0003, respectively. The novelty of our approach lies in its ability to accurately distinguish between different types of resource overloads and provide robust detection of DoS attacks within Kubernetes environments. These models demonstrated a high degree of accuracy in detecting security incidents, significantly reducing false positives and false negatives. Our findings highlight the potential of ML models to provide a targeted, proactive security framework for Kubernetes, offering robust protection against specific attack vectors while maintaining system reliability.
AbstractList Kubernetes has become a cornerstone of modern software development enabling scalable and efficient deployment of microservices. However, this scalability comes with significant security challenges, particularly in detecting specific attack types within dynamic and ephemeral environments. This study presents a focused application of Machine Learning (ML) techniques to enhance security in Kubernetes by detecting Denial of Service (DoS) attacks and differentiating between DoS attacks, resource overload caused by attacks, and natural resource overloads. We developed a custom monitoring agent that collects telemetry data from various sources, including real-world workloads, actual attack scenarios, simulated hacking attempts, and induced overloading on containers and pods, ensuring comprehensive coverage. The dataset comprising these diverse sources was meticulously labeled and preprocessed, including normalization and temporal analysis. We employed and evaluated various ML classifiers, with Random Forest and AdaBoost emerging as the top performers, achieving F1 macro scores of 0.9990 ± 0.0006 and 0.9990 ± 0.0003, respectively. The novelty of our approach lies in its ability to accurately distinguish between different types of resource overloads and provide robust detection of DoS attacks within Kubernetes environments. These models demonstrated a high degree of accuracy in detecting security incidents, significantly reducing false positives and false negatives. Our findings highlight the potential of ML models to provide a targeted, proactive security framework for Kubernetes, offering robust protection against specific attack vectors while maintaining system reliability.
Author Hammoud, J.
Darwesh, G.
Vorobeva, A.A.
Author_xml – sequence: 1
  givenname: G.
  orcidid: 0000-0003-1116-9410
  surname: Darwesh
  fullname: Darwesh, G.
– sequence: 2
  givenname: J.
  orcidid: 0000-0002-2033-0838
  surname: Hammoud
  fullname: Hammoud, J.
– sequence: 3
  givenname: A.A.
  orcidid: 0000-0001-6691-6167
  surname: Vorobeva
  fullname: Vorobeva, A.A.
BookMark eNo9kMtKQzEQhoNUUKvvkJW7o7mfxIUgxRsKbnQd0mTSntImJedU6Vv5KD6Sab1A-DOTDN_Ad4JGKSdA6JySC9pKrS4ZY6qhwoiGEVZDNLUlpK1B5QE6ZpKQhvCWj2r9N3uEzvp-QQihbQ3GjpG9TXOXfJdm-GkzhZJggB734DelG7b4oxvmeOX8vEuAl-BKqpNX-OsTr0t2fujeAbv1vp7jIWOX8sottzhUTP3N6RQdRrfs4ez3HqO3u9vXyUPz_HL_OLl5bjwTrWyikUppTo30gRkDTAfCQZgI3EQXtBSUR-0j1SQKH1QAH4huuQuk9cQEPkaPP9yQ3cKuS7dyZWuz6-z-IZeZdWXo_BIs1XIKVDkVdSsEras1l4YCU1PFRHSVdf3D8iX3fYH4z6PE7u3bnVG7M2p39m09ta327c4-_waBVnuj
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.17586/2226-1494-2024-24-6-1007-1015
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2500-0373
EndPage 1015
ExternalDocumentID oai_doaj_org_article_185be16a6f87441f9583591e26b624fa
10_17586_2226_1494_2024_24_6_1007_1015
GroupedDBID 642
AAYXX
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BPHCQ
BYOGL
CITATION
GROUPED_DOAJ
KQ8
PIMPY
PQQKQ
PROAC
VCL
VIT
ID FETCH-LOGICAL-c2475-f956683195cd299e28d03e49fe39fad85413f8cf180f4cd6decd0873ad07c09d3
IEDL.DBID DOA
ISSN 2226-1494
IngestDate Mon Nov 03 22:07:14 EST 2025
Sat Nov 29 03:57:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2475-f956683195cd299e28d03e49fe39fad85413f8cf180f4cd6decd0873ad07c09d3
ORCID 0000-0001-6691-6167
0000-0003-1116-9410
0000-0002-2033-0838
OpenAccessLink https://doaj.org/article/185be16a6f87441f9583591e26b624fa
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_185be16a6f87441f9583591e26b624fa
crossref_primary_10_17586_2226_1494_2024_24_6_1007_1015
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki
PublicationYear 2024
Publisher ITMO University
Publisher_xml – name: ITMO University
SSID ssj0001700022
ssib026971427
Score 2.2759619
Snippet Kubernetes has become a cornerstone of modern software development enabling scalable and efficient deployment of microservices. However, this scalability comes...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 1007
SubjectTerms безопасность kubernetes
кибербезопасность
контейнеризация
машинное обучение
микросервисы
обнаружение аномалий
обнаружение угроз в реальном времени
телеметрические данные
Title Enhancing Kubernetes security with machine learning: а proactive approach to anomaly detection
URI https://doaj.org/article/185be16a6f87441f9583591e26b624fa
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2500-0373
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001700022
  issn: 2226-1494
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsUwEA0iIroQn3h9kYW4C_aRpIk7FUUQxIWCu9AmEx9or1yvgn_lp_hJzqRVris3Qik00FJOTzMnw-QMY7sxjx4_qxEqLxshVQ7CqtoK1XgpAWrA-SE1m6guLszNjb2caPVFNWGdPXAH3D7GkwZyXetIRu15tAo1g82h0I0uZEzSCFXPxGIKmVRoW-Wy97d86ExiKFpRpznUGwKXBXKW7dGMgXpZ7_8MImkKPEmBl5TEQ8KqXxFrwtg_RaDTRbbQS0d-2L3yEpuCdpnNTxgKrjB30t6RgUZ7y89fGxi1lFblL32POk5JV_6UyieB9_0ibg_45wdPG6to5uPfJuN8POR1O3yqH995gHGq2GpX2fXpydXxmehbKAhfyEoJhEtrg7-Z8gEDDxQmZCVIG6G0sQ5GYQyLxsfcZFH6oAP4kJmqrENW-cyGco1Nt8MW1hn3jVJN4QtNHn9lZW3UEGobSOCYCM2AVd8wuefOKcPRCoMAdgSwI4AdAezw0J1bMgE8YEeE6s9d5HidBpAHrueB-4sHG__xkE02lwiQylW22PR49ArbbMa_je9fRjuJYl80Hs6I
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Kubernetes+security+with+machine+learning%3A+%D0%B0+proactive+approach+to+anomaly+detection&rft.jtitle=Nauchno-tekhnicheski%C4%AD+vestnik+informat%CD%A1s%EF%B8%A1ionnykh+tekhnologi%C4%AD%2C+mekhaniki+i+optiki&rft.au=G.+Darwesh&rft.au=J.+Hammoud&rft.au=A.+A.+Vorobeva&rft.date=2024-12-01&rft.pub=ITMO+University&rft.issn=2226-1494&rft.eissn=2500-0373&rft.volume=24&rft.issue=6&rft.spage=1007&rft.epage=1015&rft_id=info:doi/10.17586%2F2226-1494-2024-24-6-1007-1015&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_185be16a6f87441f9583591e26b624fa
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2226-1494&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2226-1494&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2226-1494&client=summon