SubLinearForce: Fully Sublinear-Time Force Computation for Large Complex Graph Drawing

Recent works in graph visualization attempt to reduce the runtime of repulsion force computation of force-directed algorithms using sampling. However, they fail to reduce the runtime for attraction force computation to sublinear in the number of edges. We present the SubLinearForce framework for a f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics Jg. 30; H. 7; S. 3386 - 3399
Hauptverfasser: Meidiana, Amyra, Hong, Seok-Hee, Cai, Shijun, Torkel, Marnijati, Eades, Peter
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1077-2626, 1941-0506
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent works in graph visualization attempt to reduce the runtime of repulsion force computation of force-directed algorithms using sampling. However, they fail to reduce the runtime for attraction force computation to sublinear in the number of edges. We present the SubLinearForce framework for a fully sublinear-time force computation algorithm for drawing large complex graphs. More precisely, we present new sublinear-time algorithms for the attraction force computation of force-directed algorithms. We then integrate them with sublinear-time repulsion force computation to give a fully sublinear-time force computation. Extensive experiments show that our algorithms compute layouts on average 80% faster than the existing linear-time force computation algorithm, while obtaining significantly better quality metrics such as edge crossing and shape-based metrics.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1077-2626
1941-0506
DOI:10.1109/TVCG.2022.3233287