AI Enabled 6G for Semantic Metaverse: Prospects, Challenges and Solutions for Future Wireless VR

Wireless support of virtual reality (VR) has challenges when a network has multiple users, particularly for 3D VR gaming, digital AI avatars, and remote team collaboration. This work addresses these challenges through investigation of the low-rank channels that inevitably occur when there are more a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications Jg. 32; H. 5; S. 72 - 79
Hauptverfasser: Mohsin, Muhammad Ahmed, Bhattacharya, Sagnik, Gorle, Abhiram R., Jamshed, Muhammad Ali, Cioffi, John M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1536-1284, 1558-0687
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Wireless support of virtual reality (VR) has challenges when a network has multiple users, particularly for 3D VR gaming, digital AI avatars, and remote team collaboration. This work addresses these challenges through investigation of the low-rank channels that inevitably occur when there are more active users than there are degrees of spatial freedom, effectively often the number of antennas. The presented approach uses optimal nonlinear transceivers, equivalently generalized decision-feedback or successive cancellation for uplink and superposition or dirty-paper precoders for downlink. Additionally, a powerful optimization approach for the users' energy allocation and decoding order appears to provide large improvements over existing methods, effectively nearing theoretical optima. As the latter optimization methods pose real-time challenges, approximations using deep reinforcement learning (DRL) are used to approximate best performance with much lower (5x at least) complexity. Experimental results show significantly larger sum rates and very large power savings to attain the data rates found necessary to support VR. Experimental results show the proposed algorithm outperforms current industry standards like orthogonal multiple access (OMA), non-orthogonal multiple access (NOMA), as well as the highly researched methods in multi-carrier NOMA (MC-NOMA), enhancing sum data rate by 39%, 28%, and 16%, respectively, at a given power level. For the same data rate, it achieves power savings of 75%,45%, and 40%, making it ideal for VR applications. Additionally, a near-optimal deep reinforcement learning (DRL)-based resource allocation framework for real-time use by being 5x faster and reaching 83% of the global optimum is introduced.
AbstractList Wireless support of virtual reality (VR) has challenges when a network has multiple users, particularly for 3D VR gaming, digital AI avatars, and remote team collaboration. This work addresses these challenges through investigation of the low-rank channels that inevitably occur when there are more active users than there are degrees of spatial freedom, effectively often the number of antennas. The presented approach uses optimal nonlinear transceivers, equivalently generalized decision-feedback or successive cancellation for uplink and superposition or dirty-paper precoders for downlink. Additionally, a powerful optimization approach for the users' energy allocation and decoding order appears to provide large improvements over existing methods, effectively nearing theoretical optima. As the latter optimization methods pose real-time challenges, approximations using deep reinforcement learning (DRL) are used to approximate best performance with much lower (5x at least) complexity. Experimental results show significantly larger sum rates and very large power savings to attain the data rates found necessary to support VR. Experimental results show the proposed algorithm outperforms current industry standards like orthogonal multiple access (OMA), non-orthogonal multiple access (NOMA), as well as the highly researched methods in multi-carrier NOMA (MC-NOMA), enhancing sum data rate by 39%, 28%, and 16%, respectively, at a given power level. For the same data rate, it achieves power savings of 75%,45%, and 40%, making it ideal for VR applications. Additionally, a near-optimal deep reinforcement learning (DRL)-based resource allocation framework for real-time use by being 5x faster and reaching 83% of the global optimum is introduced.
Author Bhattacharya, Sagnik
Gorle, Abhiram R.
Mohsin, Muhammad Ahmed
Cioffi, John M.
Jamshed, Muhammad Ali
Author_xml – sequence: 1
  givenname: Muhammad Ahmed
  surname: Mohsin
  fullname: Mohsin, Muhammad Ahmed
  email: muahmed@stanford.edu
  organization: Stanford University,USA
– sequence: 2
  givenname: Sagnik
  surname: Bhattacharya
  fullname: Bhattacharya, Sagnik
  email: sagnikb@stanford.edu
  organization: Stanford University,USA
– sequence: 3
  givenname: Abhiram R.
  surname: Gorle
  fullname: Gorle, Abhiram R.
  email: abhiramg@stanford.edu
  organization: Stanford University,USA
– sequence: 4
  givenname: Muhammad Ali
  surname: Jamshed
  fullname: Jamshed, Muhammad Ali
  email: muhammadali.jamshed@glasgow.ac.uk
  organization: University of Glasgow,UK
– sequence: 5
  givenname: John M.
  surname: Cioffi
  fullname: Cioffi, John M.
  email: cioffi@stanford.edu
  organization: Stanford University,USA
BookMark eNpFkE1PwkAQhjcGEwE9e_GwiVcLu92v1htpAEkgGlE51m07qyVli7utif_eIiSeZg7P-07mGaCerS0gdE3JiFISj1ebZEQIHYWCEMLFGepTIaKAyEj1DjuTAQ0jfoEG3m87UEkh--h9ssBTq7MKCizn2NQOr2GnbVPmeAWN_gbn4R4_udrvIW_8HU4-dVWB_QCPtS3wuq7apqyt_8vO2qZ1gDelgwq8x2_Pl-jc6MrD1WkO0ets-pI8BMvH-SKZLIM85LIJTBYxXVAhFWiZy8yYQkERaqMY5XEeRiojEIKOTBwLrrLYZJznhITSGCUzyobo9ti7d_VXC75Jt3XrbHcyZaFgMeGM8Y4aH6m8e8g7MOnelTvtflJK0oPGtNOYdnbSk8YucXNMlADwT1OqhIwE-wV7E2-a
CODEN IWCEAS
Cites_doi 10.4337/9781035324866.00008
10.1109/ISCAS.2016.7539092
10.3390/electronics12173651
10.1109/APWCS55727.2022.9906483
10.1109/MWC.001.2000303
10.1109/ICCCN.2017.8038375
10.1109/TVT.2020.2995877
10.1109/MNET.2018.1700268
10.1109/ICC.2005.1494444
10.1109/ICASSP49660.2025.10888922
10.1109/MWC.004.2200393
10.1109/COMST.2021.3061981
10.1109/TVT.2017.2737028
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/MWC.001.2500045
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library (LUT)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0687
EndPage 79
ExternalDocumentID 10_1109_MWC_001_2500045
11175685
Genre orig-research
GrantInformation_xml – fundername: Intel Corporation
  funderid: 10.13039/100002418
– fundername: Ericsson
  funderid: 10.13039/100018177
GroupedDBID -~X
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
TN5
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c246t-fb83ad1567ea6c6bffd7ed2af73149c287b0e2ea8f99547b9fb44c0026ff76b13
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001579023100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1284
IngestDate Sun Oct 19 00:04:41 EDT 2025
Sat Nov 29 07:21:51 EST 2025
Wed Oct 01 07:05:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-fb83ad1567ea6c6bffd7ed2af73149c287b0e2ea8f99547b9fb44c0026ff76b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3253904334
PQPubID 75748
PageCount 8
ParticipantIDs crossref_primary_10_1109_MWC_001_2500045
proquest_journals_3253904334
ieee_primary_11175685
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE wireless communications
PublicationTitleAbbrev WC-M
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref10
ref2
ref1
Ilab (ref8) 2024
ref7
ref9
ref4
ref3
ref6
ref5
Cioffi (ref11) 2024; 40
References_xml – ident: ref1
  doi: 10.4337/9781035324866.00008
– volume-title: Cloud VR-Oriented Bearer Network White Paper
  year: 2024
  ident: ref8
– ident: ref9
  doi: 10.1109/ISCAS.2016.7539092
– ident: ref13
  doi: 10.3390/electronics12173651
– ident: ref14
  doi: 10.1109/APWCS55727.2022.9906483
– ident: ref5
  doi: 10.1109/MWC.001.2000303
– ident: ref2
  doi: 10.1109/ICCCN.2017.8038375
– ident: ref4
  doi: 10.1109/TVT.2020.2995877
– ident: ref10
  doi: 10.1109/MNET.2018.1700268
– ident: ref12
  doi: 10.1109/ICC.2005.1494444
– ident: ref7
  doi: 10.1109/ICASSP49660.2025.10888922
– volume: 40
  start-page: 49
  issue: 4
  year: 2024
  ident: ref11
  publication-title: Data Transmission Theory
– ident: ref15
  doi: 10.1109/MWC.004.2200393
– ident: ref3
  doi: 10.1109/COMST.2021.3061981
– ident: ref6
  doi: 10.1109/TVT.2017.2737028
SSID ssj0017656
Score 2.4703414
Snippet Wireless support of virtual reality (VR) has challenges when a network has multiple users, particularly for 3D VR gaming, digital AI avatars, and remote team...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 72
SubjectTerms 6G mobile communication
Artificial intelligence
Avatars
Decoding
Deep learning
Machine learning
Metaverse
Nonorthogonal multiple access
Optimization
Real time
Resource allocation
Semantic communication
Virtual reality
Wireless networks
Title AI Enabled 6G for Semantic Metaverse: Prospects, Challenges and Solutions for Future Wireless VR
URI https://ieeexplore.ieee.org/document/11175685
https://www.proquest.com/docview/3253904334
Volume 32
WOSCitedRecordID wos001579023100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library (LUT)
  customDbUrl:
  eissn: 1558-0687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017656
  issn: 1536-1284
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBZxGFgjwwMJA2cRw7YauqFpBoVfEo3cI5tqVK0KIm5fdju2kBIQa2DLFk3flxn-_u-xA658apyqwcj0s_9Az-Eh6AQa2xpDRhZolFjlJoeMf7_Xg0SgZls7rrhVFKueIz1bCfLpcvp9ncPpU1A8sryeJoHa1zzhbNWquUAWdOqtXsYCssE9OSxyfwk2bvuW0zDg0SuRDmxxXkNFV-HcTudunu_HNeu2i7DCNxa-H3PbSmJvto6xu54AF6ad3ijuuMkphdYxOc4gf1Zgw5znBPFWDrMdQVHsymrtsyv8TtpbBKjmEi8erFzI3tOvIRbKtlX83piIf3VfTU7Ty2b7xST8HLCGWFp0UcgjSAjStgGRNaS64kAc1Dg5Myg52Er4iCWFuSOC4SLSjNLErTmjMRhIeoMplO1BHCgYAgBhOdMwiojCgk4HNJGAkAtK-ghi6WJk7fF7QZqYMbfpIab9hKurT0Rg1VrUW_fiuNWUP1pU_Scl_laUiiMLGca_T4j2EnaJNYiV5Xb1dHlWI2V6doI_soxvnszC2ZTyaPvcM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4omqgHnxhR1B48eHBht9ttd70RAkIEQhSR29rdtgmJguHh77ctC2qMB2972CbNTB_zdWa-D-CKaadKvXIcJlzf0fgrcTjXqDUUhERUL7HAUgr1W6zTCQeDqJs1q9teGCmlLT6TJfNpc_linM7NU1nZM7ySNAzWYSMgBLuLdq1V0oBRK9aq97CRlglJxuTjuVG5_Vw1OYcSDmwQ8-MSsqoqv45ie7_U9_45s33YzQJJVFl4_gDW5OgQdr7RCx7BS6WJarY3SiB6h3R4ih7lmzblMEVtOeOmIkPeou5kbPstpzeoupRWmSI-Emj1ZmbH1i39CDL1sq_6fET9hzw81Wu9asPJFBWcFBM6c1QS-lxoyMYkpylNlBJMCswV8zVSSjV6SlyJJQ-VoYljSaQSQlKD05RiNPH8Y8iNxiN5AshLuBdyHZ9T7hEREB5xlwlMsce5ciUvwPXSxPH7gjgjtoDDjWLtDVNLF2feKEDeWPTrt8yYBSgufRJnO2sa-zjwI8O6Rk7_GHYJW41euxW3mp37M9jGRrDXVt8VITebzOU5bKYfs-F0cmGXzycxbMEK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI+Enabled+6G+for+Semantic+Metaverse%3A+Prospects%2C+Challenges+and+Solutions+for+Future+Wireless+VR&rft.jtitle=IEEE+wireless+communications&rft.au=Mohsin%2C+Muhammad+Ahmed&rft.au=Bhattacharya%2C+Sagnik&rft.au=Gorle%2C+Abhiram+R.&rft.au=Jamshed%2C+Muhammad+Ali&rft.date=2025-10-01&rft.pub=IEEE&rft.issn=1536-1284&rft.volume=32&rft.issue=5&rft.spage=72&rft.epage=79&rft_id=info:doi/10.1109%2FMWC.001.2500045&rft.externalDocID=11175685
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1284&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1284&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1284&client=summon