AI Enabled 6G for Semantic Metaverse: Prospects, Challenges and Solutions for Future Wireless VR
Wireless support of virtual reality (VR) has challenges when a network has multiple users, particularly for 3D VR gaming, digital AI avatars, and remote team collaboration. This work addresses these challenges through investigation of the low-rank channels that inevitably occur when there are more a...
Gespeichert in:
| Veröffentlicht in: | IEEE wireless communications Jg. 32; H. 5; S. 72 - 79 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1536-1284, 1558-0687 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Wireless support of virtual reality (VR) has challenges when a network has multiple users, particularly for 3D VR gaming, digital AI avatars, and remote team collaboration. This work addresses these challenges through investigation of the low-rank channels that inevitably occur when there are more active users than there are degrees of spatial freedom, effectively often the number of antennas. The presented approach uses optimal nonlinear transceivers, equivalently generalized decision-feedback or successive cancellation for uplink and superposition or dirty-paper precoders for downlink. Additionally, a powerful optimization approach for the users' energy allocation and decoding order appears to provide large improvements over existing methods, effectively nearing theoretical optima. As the latter optimization methods pose real-time challenges, approximations using deep reinforcement learning (DRL) are used to approximate best performance with much lower (5x at least) complexity. Experimental results show significantly larger sum rates and very large power savings to attain the data rates found necessary to support VR. Experimental results show the proposed algorithm outperforms current industry standards like orthogonal multiple access (OMA), non-orthogonal multiple access (NOMA), as well as the highly researched methods in multi-carrier NOMA (MC-NOMA), enhancing sum data rate by 39%, 28%, and 16%, respectively, at a given power level. For the same data rate, it achieves power savings of 75%,45%, and 40%, making it ideal for VR applications. Additionally, a near-optimal deep reinforcement learning (DRL)-based resource allocation framework for real-time use by being 5x faster and reaching 83% of the global optimum is introduced. |
|---|---|
| AbstractList | Wireless support of virtual reality (VR) has challenges when a network has multiple users, particularly for 3D VR gaming, digital AI avatars, and remote team collaboration. This work addresses these challenges through investigation of the low-rank channels that inevitably occur when there are more active users than there are degrees of spatial freedom, effectively often the number of antennas. The presented approach uses optimal nonlinear transceivers, equivalently generalized decision-feedback or successive cancellation for uplink and superposition or dirty-paper precoders for downlink. Additionally, a powerful optimization approach for the users' energy allocation and decoding order appears to provide large improvements over existing methods, effectively nearing theoretical optima. As the latter optimization methods pose real-time challenges, approximations using deep reinforcement learning (DRL) are used to approximate best performance with much lower (5x at least) complexity. Experimental results show significantly larger sum rates and very large power savings to attain the data rates found necessary to support VR. Experimental results show the proposed algorithm outperforms current industry standards like orthogonal multiple access (OMA), non-orthogonal multiple access (NOMA), as well as the highly researched methods in multi-carrier NOMA (MC-NOMA), enhancing sum data rate by 39%, 28%, and 16%, respectively, at a given power level. For the same data rate, it achieves power savings of 75%,45%, and 40%, making it ideal for VR applications. Additionally, a near-optimal deep reinforcement learning (DRL)-based resource allocation framework for real-time use by being 5x faster and reaching 83% of the global optimum is introduced. |
| Author | Bhattacharya, Sagnik Gorle, Abhiram R. Mohsin, Muhammad Ahmed Cioffi, John M. Jamshed, Muhammad Ali |
| Author_xml | – sequence: 1 givenname: Muhammad Ahmed surname: Mohsin fullname: Mohsin, Muhammad Ahmed email: muahmed@stanford.edu organization: Stanford University,USA – sequence: 2 givenname: Sagnik surname: Bhattacharya fullname: Bhattacharya, Sagnik email: sagnikb@stanford.edu organization: Stanford University,USA – sequence: 3 givenname: Abhiram R. surname: Gorle fullname: Gorle, Abhiram R. email: abhiramg@stanford.edu organization: Stanford University,USA – sequence: 4 givenname: Muhammad Ali surname: Jamshed fullname: Jamshed, Muhammad Ali email: muhammadali.jamshed@glasgow.ac.uk organization: University of Glasgow,UK – sequence: 5 givenname: John M. surname: Cioffi fullname: Cioffi, John M. email: cioffi@stanford.edu organization: Stanford University,USA |
| BookMark | eNpFkE1PwkAQhjcGEwE9e_GwiVcLu92v1htpAEkgGlE51m07qyVli7utif_eIiSeZg7P-07mGaCerS0gdE3JiFISj1ebZEQIHYWCEMLFGepTIaKAyEj1DjuTAQ0jfoEG3m87UEkh--h9ssBTq7MKCizn2NQOr2GnbVPmeAWN_gbn4R4_udrvIW_8HU4-dVWB_QCPtS3wuq7apqyt_8vO2qZ1gDelgwq8x2_Pl-jc6MrD1WkO0ets-pI8BMvH-SKZLIM85LIJTBYxXVAhFWiZy8yYQkERaqMY5XEeRiojEIKOTBwLrrLYZJznhITSGCUzyobo9ti7d_VXC75Jt3XrbHcyZaFgMeGM8Y4aH6m8e8g7MOnelTvtflJK0oPGtNOYdnbSk8YucXNMlADwT1OqhIwE-wV7E2-a |
| CODEN | IWCEAS |
| Cites_doi | 10.4337/9781035324866.00008 10.1109/ISCAS.2016.7539092 10.3390/electronics12173651 10.1109/APWCS55727.2022.9906483 10.1109/MWC.001.2000303 10.1109/ICCCN.2017.8038375 10.1109/TVT.2020.2995877 10.1109/MNET.2018.1700268 10.1109/ICC.2005.1494444 10.1109/ICASSP49660.2025.10888922 10.1109/MWC.004.2200393 10.1109/COMST.2021.3061981 10.1109/TVT.2017.2737028 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD F28 FR3 L7M |
| DOI | 10.1109/MWC.001.2500045 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library (LUT) CrossRef Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts |
| DatabaseTitleList | Engineering Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library (LUT) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0687 |
| EndPage | 79 |
| ExternalDocumentID | 10_1109_MWC_001_2500045 11175685 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Intel Corporation funderid: 10.13039/100002418 – fundername: Ericsson funderid: 10.13039/100018177 |
| GroupedDBID | -~X 0R~ 1OL 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS TN5 AAYXX CITATION 7SP 8FD F28 FR3 L7M |
| ID | FETCH-LOGICAL-c246t-fb83ad1567ea6c6bffd7ed2af73149c287b0e2ea8f99547b9fb44c0026ff76b13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001579023100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1536-1284 |
| IngestDate | Sun Oct 19 00:04:41 EDT 2025 Sat Nov 29 07:21:51 EST 2025 Wed Oct 01 07:05:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-fb83ad1567ea6c6bffd7ed2af73149c287b0e2ea8f99547b9fb44c0026ff76b13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3253904334 |
| PQPubID | 75748 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1109_MWC_001_2500045 proquest_journals_3253904334 ieee_primary_11175685 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE wireless communications |
| PublicationTitleAbbrev | WC-M |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref10 ref2 ref1 Ilab (ref8) 2024 ref7 ref9 ref4 ref3 ref6 ref5 Cioffi (ref11) 2024; 40 |
| References_xml | – ident: ref1 doi: 10.4337/9781035324866.00008 – volume-title: Cloud VR-Oriented Bearer Network White Paper year: 2024 ident: ref8 – ident: ref9 doi: 10.1109/ISCAS.2016.7539092 – ident: ref13 doi: 10.3390/electronics12173651 – ident: ref14 doi: 10.1109/APWCS55727.2022.9906483 – ident: ref5 doi: 10.1109/MWC.001.2000303 – ident: ref2 doi: 10.1109/ICCCN.2017.8038375 – ident: ref4 doi: 10.1109/TVT.2020.2995877 – ident: ref10 doi: 10.1109/MNET.2018.1700268 – ident: ref12 doi: 10.1109/ICC.2005.1494444 – ident: ref7 doi: 10.1109/ICASSP49660.2025.10888922 – volume: 40 start-page: 49 issue: 4 year: 2024 ident: ref11 publication-title: Data Transmission Theory – ident: ref15 doi: 10.1109/MWC.004.2200393 – ident: ref3 doi: 10.1109/COMST.2021.3061981 – ident: ref6 doi: 10.1109/TVT.2017.2737028 |
| SSID | ssj0017656 |
| Score | 2.4703414 |
| Snippet | Wireless support of virtual reality (VR) has challenges when a network has multiple users, particularly for 3D VR gaming, digital AI avatars, and remote team... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 72 |
| SubjectTerms | 6G mobile communication Artificial intelligence Avatars Decoding Deep learning Machine learning Metaverse Nonorthogonal multiple access Optimization Real time Resource allocation Semantic communication Virtual reality Wireless networks |
| Title | AI Enabled 6G for Semantic Metaverse: Prospects, Challenges and Solutions for Future Wireless VR |
| URI | https://ieeexplore.ieee.org/document/11175685 https://www.proquest.com/docview/3253904334 |
| Volume | 32 |
| WOSCitedRecordID | wos001579023100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library (LUT) customDbUrl: eissn: 1558-0687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017656 issn: 1536-1284 databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBZxGFgjwwMJA2cRw7YauqFpBoVfEo3cI5tqVK0KIm5fdju2kBIQa2DLFk3flxn-_u-xA658apyqwcj0s_9Az-Eh6AQa2xpDRhZolFjlJoeMf7_Xg0SgZls7rrhVFKueIz1bCfLpcvp9ncPpU1A8sryeJoHa1zzhbNWquUAWdOqtXsYCssE9OSxyfwk2bvuW0zDg0SuRDmxxXkNFV-HcTudunu_HNeu2i7DCNxa-H3PbSmJvto6xu54AF6ad3ijuuMkphdYxOc4gf1Zgw5znBPFWDrMdQVHsymrtsyv8TtpbBKjmEi8erFzI3tOvIRbKtlX83piIf3VfTU7Ty2b7xST8HLCGWFp0UcgjSAjStgGRNaS64kAc1Dg5Myg52Er4iCWFuSOC4SLSjNLErTmjMRhIeoMplO1BHCgYAgBhOdMwiojCgk4HNJGAkAtK-ghi6WJk7fF7QZqYMbfpIab9hKurT0Rg1VrUW_fiuNWUP1pU_Scl_laUiiMLGca_T4j2EnaJNYiV5Xb1dHlWI2V6doI_soxvnszC2ZTyaPvcM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4omqgHnxhR1B48eHBht9ttd70RAkIEQhSR29rdtgmJguHh77ctC2qMB2972CbNTB_zdWa-D-CKaadKvXIcJlzf0fgrcTjXqDUUhERUL7HAUgr1W6zTCQeDqJs1q9teGCmlLT6TJfNpc_linM7NU1nZM7ySNAzWYSMgBLuLdq1V0oBRK9aq97CRlglJxuTjuVG5_Vw1OYcSDmwQ8-MSsqoqv45ie7_U9_45s33YzQJJVFl4_gDW5OgQdr7RCx7BS6WJarY3SiB6h3R4ih7lmzblMEVtOeOmIkPeou5kbPstpzeoupRWmSI-Emj1ZmbH1i39CDL1sq_6fET9hzw81Wu9asPJFBWcFBM6c1QS-lxoyMYkpylNlBJMCswV8zVSSjV6SlyJJQ-VoYljSaQSQlKD05RiNPH8Y8iNxiN5AshLuBdyHZ9T7hEREB5xlwlMsce5ciUvwPXSxPH7gjgjtoDDjWLtDVNLF2feKEDeWPTrt8yYBSgufRJnO2sa-zjwI8O6Rk7_GHYJW41euxW3mp37M9jGRrDXVt8VITebzOU5bKYfs-F0cmGXzycxbMEK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI+Enabled+6G+for+Semantic+Metaverse%3A+Prospects%2C+Challenges+and+Solutions+for+Future+Wireless+VR&rft.jtitle=IEEE+wireless+communications&rft.au=Mohsin%2C+Muhammad+Ahmed&rft.au=Bhattacharya%2C+Sagnik&rft.au=Gorle%2C+Abhiram+R.&rft.au=Jamshed%2C+Muhammad+Ali&rft.date=2025-10-01&rft.pub=IEEE&rft.issn=1536-1284&rft.volume=32&rft.issue=5&rft.spage=72&rft.epage=79&rft_id=info:doi/10.1109%2FMWC.001.2500045&rft.externalDocID=11175685 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1284&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1284&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1284&client=summon |