FastTuning: Enabling Fast and Efficient Hyper-Parameter Tuning With Partitioning and Parallelism of Search Space
Hyper-parameter tuning (HPT) for deep learning (DL) models is prohibitively expensive. Sequential model-based optimization (SMBO) emerges as the state-of-the-art (SOTA) approach to automatically optimize HPT performance due to its heuristic advantages. Unfortunately, focusing on algorithm optimizati...
Uložené v:
| Vydané v: | IEEE transactions on parallel and distributed systems Ročník 35; číslo 7; s. 1174 - 1188 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1045-9219, 1558-2183 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!