CGM-Based Blood Glucose Prediction Model With LSTM Encoder-Decoder Architecture
Accurate prediction of blood glucose levels is crucial for automated treatment in diabetic patients. This study proposes a blood glucose prediction model based on an improved attention mechanism within a long short-term memory (LSTM) encoder-decoder (Att-E-D) architecture to enhance blood glucose pr...
Gespeichert in:
| Veröffentlicht in: | IEEE sensors journal Jg. 25; H. 3; S. 5824 - 5839 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1530-437X, 1558-1748 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!