Distributed Randomized Gradient-Free Convex Optimization With Set Constraints Over Time-Varying Weight-Unbalanced Digraphs
This paper explores a class of distributed constrained convex optimization problems where the objective function is a sum of <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> convex local objective functions. These functions are characterized...
Saved in:
| Published in: | IEEE transactions on network science and engineering Vol. 12; no. 2; pp. 610 - 622 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.03.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2327-4697, 2334-329X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper explores a class of distributed constrained convex optimization problems where the objective function is a sum of <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> convex local objective functions. These functions are characterized by local non-smoothness yet adhere to Lipschitz continuity, and the optimization process is further constrained by <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> distinct closed convex sets. To delineate the structure of information exchange among agents, a series of time-varying weight-unbalance directed graphs are introduced. Furthermore, this study introduces a novel algorithm, distributed randomized gradient-free constrained optimization algorithm. This algorithm marks a significant advancement by substituting the conventional requirement for precise gradient or subgradient information in each iterative update with a random gradient-free oracle, thereby addressing scenarios where accurate gradient information is hard to obtain. A thorough convergence analysis is provided based on the smoothing parameters inherent in the local objective functions, the Lipschitz constants, and a series of standard assumptions. Significantly, the proposed algorithm can converge to an approximate optimal solution within a predetermined error threshold for the consisdered optimization problem, achieving the same convergence rate of <inline-formula><tex-math notation="LaTeX">{\mathcal O}(\frac{\ln (k)}{\sqrt{k} })</tex-math></inline-formula> as the general randomized gradient-free algorithms when the decay step size is selected appropriately. And when at least one of the local objective functions exhibits strong convexity, the proposed algorithm can achieve a faster convergence rate, <inline-formula><tex-math notation="LaTeX">{\mathcal O}(\frac{1}{k})</tex-math></inline-formula>. Finally, rigorous simulation results verify the correctness of theoretical findings. |
|---|---|
| AbstractList | This paper explores a class of distributed constrained convex optimization problems where the objective function is a sum of <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> convex local objective functions. These functions are characterized by local non-smoothness yet adhere to Lipschitz continuity, and the optimization process is further constrained by <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> distinct closed convex sets. To delineate the structure of information exchange among agents, a series of time-varying weight-unbalance directed graphs are introduced. Furthermore, this study introduces a novel algorithm, distributed randomized gradient-free constrained optimization algorithm. This algorithm marks a significant advancement by substituting the conventional requirement for precise gradient or subgradient information in each iterative update with a random gradient-free oracle, thereby addressing scenarios where accurate gradient information is hard to obtain. A thorough convergence analysis is provided based on the smoothing parameters inherent in the local objective functions, the Lipschitz constants, and a series of standard assumptions. Significantly, the proposed algorithm can converge to an approximate optimal solution within a predetermined error threshold for the consisdered optimization problem, achieving the same convergence rate of <inline-formula><tex-math notation="LaTeX">{\mathcal O}(\frac{\ln (k)}{\sqrt{k} })</tex-math></inline-formula> as the general randomized gradient-free algorithms when the decay step size is selected appropriately. And when at least one of the local objective functions exhibits strong convexity, the proposed algorithm can achieve a faster convergence rate, <inline-formula><tex-math notation="LaTeX">{\mathcal O}(\frac{1}{k})</tex-math></inline-formula>. Finally, rigorous simulation results verify the correctness of theoretical findings. This paper explores a class of distributed constrained convex optimization problems where the objective function is a sum of [Formula Omitted] convex local objective functions. These functions are characterized by local non-smoothness yet adhere to Lipschitz continuity, and the optimization process is further constrained by [Formula Omitted] distinct closed convex sets. To delineate the structure of information exchange among agents, a series of time-varying weight-unbalance directed graphs are introduced. Furthermore, this study introduces a novel algorithm, distributed randomized gradient-free constrained optimization algorithm. This algorithm marks a significant advancement by substituting the conventional requirement for precise gradient or subgradient information in each iterative update with a random gradient-free oracle, thereby addressing scenarios where accurate gradient information is hard to obtain. A thorough convergence analysis is provided based on the smoothing parameters inherent in the local objective functions, the Lipschitz constants, and a series of standard assumptions. Significantly, the proposed algorithm can converge to an approximate optimal solution within a predetermined error threshold for the consisdered optimization problem, achieving the same convergence rate of [Formula Omitted] as the general randomized gradient-free algorithms when the decay step size is selected appropriately. And when at least one of the local objective functions exhibits strong convexity, the proposed algorithm can achieve a faster convergence rate, [Formula Omitted]. Finally, rigorous simulation results verify the correctness of theoretical findings. |
| Author | Zhu, Yanan Li, Tao Wen, Guanghui Li, Qinghai |
| Author_xml | – sequence: 1 givenname: Yanan orcidid: 0000-0001-7980-6282 surname: Zhu fullname: Zhu, Yanan email: ynzhu@nuist.edu.cn organization: School of Automation, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 2 givenname: Qinghai surname: Li fullname: Li, Qinghai email: 202212490051@nuist.edu.cn organization: School of Automation, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 3 givenname: Tao orcidid: 0000-0002-9190-0199 surname: Li fullname: Li, Tao email: litaojia@nuist.edu.cn organization: School of Automation, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 4 givenname: Guanghui orcidid: 0000-0003-0070-8597 surname: Wen fullname: Wen, Guanghui email: wenguanghui@gmail.com organization: Department of Systems Science, School of Mathematics, Southeast University, Nanjing, China |
| BookMark | eNpNkEtPAjEUhRujiYj8ABMXk7gu9jG006XhpQmRREDcTTozd6AEOtgWovx6ZwILV_ck95xzc787dG0rCwg9UNKllKjn-fts2GWExV3eI0JydoVajPMYc6a-rhvNJI6Fkreo4_2GEEJZIjjnLXQaGB-cyQ4BiuhD26LamVMtx04XBmzAIwcQ9St7hJ9oug-mXutgKhstTVhHMwjNsq7QxgYfTY_gornZAf7U7tfYVbQEs1oHvLCZ3mqb19UDs3J6v_b36KbUWw-dy2yjxWg477_iyXT81n-Z4JzFIuCCJEQxkZVMJEIWjOu45CTXOUlUL6NZzjOqe6AkTZJElDIrVV7QAqjSRBPIeBs9nXv3rvo-gA_ppjo4W59MORWKxZTJuHbRsyt3lfcOynTvzK5-IqUkbSinDeW0oZxeKNeZx3PGAMA_vxQyJpT_ARlBfFs |
| CODEN | ITNSD5 |
| Cites_doi | 10.1007/s11432-020-3275-3 10.1007/s00158-004-0414-z 10.1109/TNSE.2020.2965999 10.1109/TNSE.2022.3155481 10.1109/TNSE.2021.3104513 10.1109/TAC.2019.2914025 10.1515/9781400841059 10.1016/j.automatica.2016.01.055 10.1109/TNSE.2022.3178107 10.1145/3128572.3140448 10.1016/j.automatica.2023.111328 10.1007/s10957-010-9737-7 10.1007/s10208-015-9296-2 10.1109/TCNS.2021.3112770 10.1109/TAC.2014.2364096 10.1109/TSMC.2021.3112691 10.1109/TCNS.2019.2915015 10.1109/TAC.2020.2972824 10.1002/rnc.3164 10.1109/TCNS.2020.3029996 10.1109/TSMC.2017.2757265 10.1109/JAS.2022.105923 10.1109/TNSE.2022.3195953 10.1016/j.automatica.2021.109899 10.1109/TCYB.2023.3284822 10.1109/TAC.2016.2610945 10.1109/TCYB.2019.2927725 10.1109/TAC.2023.3237975 10.1109/TCYB.2018.2890140 10.1109/TNSE.2023.3300736 10.1109/TAC.2020.2969721 10.1109/TCSII.2018.2878250 10.1109/TNSE.2023.3311779 10.1109/TCST.2016.2517574 10.1007/s10107-004-0552-5 10.1109/TAC.2021.3075669 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TNSE.2024.3506732 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library (LUT) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2334-329X |
| EndPage | 622 |
| ExternalDocumentID | 10_1109_TNSE_2024_3506732 10767401 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62203224; U22B2046; 62325304; 62088101; 62373195 funderid: 10.13039/501100001809 – fundername: Jiangsu Provincial Scientific Research Center of Applied Mathematics grantid: BK20233002 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c246t-d080926bf26867d23a4f30cac0895b1bc3b1a5e9718886f7bf9cd1de19a0a0eb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001440170500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4697 |
| IngestDate | Mon Jun 30 09:51:11 EDT 2025 Sat Nov 29 08:19:02 EST 2025 Wed Aug 27 01:52:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-d080926bf26867d23a4f30cac0895b1bc3b1a5e9718886f7bf9cd1de19a0a0eb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7980-6282 0000-0002-9190-0199 0000-0003-0070-8597 |
| PQID | 3169241274 |
| PQPubID | 2040409 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TNSE_2024_3506732 proquest_journals_3169241274 ieee_primary_10767401 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on network science and engineering |
| PublicationTitleAbbrev | TNSE |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref14 ref31 Ruszczyski (ref36) 2006 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref22 doi: 10.1007/s11432-020-3275-3 – ident: ref25 doi: 10.1007/s00158-004-0414-z – ident: ref4 doi: 10.1109/TNSE.2020.2965999 – ident: ref18 doi: 10.1109/TNSE.2022.3155481 – ident: ref1 doi: 10.1109/TNSE.2021.3104513 – ident: ref32 doi: 10.1109/TAC.2019.2914025 – volume-title: Nonlinear Optimization year: 2006 ident: ref36 doi: 10.1515/9781400841059 – ident: ref8 doi: 10.1016/j.automatica.2016.01.055 – ident: ref11 doi: 10.1109/TNSE.2022.3178107 – ident: ref24 doi: 10.1145/3128572.3140448 – ident: ref34 doi: 10.1016/j.automatica.2023.111328 – ident: ref35 doi: 10.1007/s10957-010-9737-7 – ident: ref27 doi: 10.1007/s10208-015-9296-2 – ident: ref3 doi: 10.1109/TCNS.2021.3112770 – ident: ref19 doi: 10.1109/TAC.2014.2364096 – ident: ref15 doi: 10.1109/TSMC.2021.3112691 – ident: ref6 doi: 10.1109/TCNS.2019.2915015 – ident: ref12 doi: 10.1109/TAC.2020.2972824 – ident: ref28 doi: 10.1002/rnc.3164 – ident: ref17 doi: 10.1109/TCNS.2020.3029996 – ident: ref30 doi: 10.1109/TSMC.2017.2757265 – ident: ref14 doi: 10.1109/JAS.2022.105923 – ident: ref23 doi: 10.1109/TNSE.2022.3195953 – ident: ref21 doi: 10.1016/j.automatica.2021.109899 – ident: ref16 doi: 10.1109/TCYB.2023.3284822 – ident: ref10 doi: 10.1109/TAC.2016.2610945 – ident: ref9 doi: 10.1109/TCYB.2019.2927725 – ident: ref33 doi: 10.1109/TAC.2023.3237975 – ident: ref29 doi: 10.1109/TCYB.2018.2890140 – ident: ref5 doi: 10.1109/TNSE.2023.3300736 – ident: ref20 doi: 10.1109/TAC.2020.2969721 – ident: ref7 doi: 10.1109/TCSII.2018.2878250 – ident: ref13 doi: 10.1109/TNSE.2023.3311779 – ident: ref2 doi: 10.1109/TCST.2016.2517574 – ident: ref26 doi: 10.1007/s10107-004-0552-5 – ident: ref31 doi: 10.1109/TAC.2021.3075669 |
| SSID | ssj0001286333 |
| Score | 2.2981186 |
| Snippet | This paper explores a class of distributed constrained convex optimization problems where the objective function is a sum of <inline-formula><tex-math... This paper explores a class of distributed constrained convex optimization problems where the objective function is a sum of [Formula Omitted] convex local... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 610 |
| SubjectTerms | Algorithms Closed box Constraints Convergence Convergence rate Convex analysis Convex functions Convexity Directed graphs distributed multi-agent optimization Graph theory Linear programming Lipschitz condition Optimization Prediction algorithms randomized gradient-free Smoothing methods Smoothness Stochastic processes time-varying weight-unbalanced digraphs Vectors |
| Title | Distributed Randomized Gradient-Free Convex Optimization With Set Constraints Over Time-Varying Weight-Unbalanced Digraphs |
| URI | https://ieeexplore.ieee.org/document/10767401 https://www.proquest.com/docview/3169241274 |
| Volume | 12 |
| WOSCitedRecordID | wos001440170500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library (LUT) customDbUrl: eissn: 2334-329X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286333 issn: 2327-4697 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBZxHlJQ9MSC5OnDj2iAqFARUELe0W-RXRoSlKUoT667GdIBUhBjZLiaPozufzne_7DoALbV2UFIwik7AIRZHCSEiSIUYYJkxF3GhP4vqQDAZsMuFPDVjdY2GMMb74zHTd0N_l67lauFSZtXBHPePQWutJQmuw1kpChVFCSHNzGWB-NRy83NoIMIy6JHb9WMIfvsc3U_m1A3u30t_55w_tgu3m_Aiva4XvgTWT74OtFVbBA7C8cWS4ro-V0fBZ5Ho-my7t8K7w5V0V6hfGwJ4rN_-Ej3bLmDVYTDieVm_wxVTuYembR1QlfLSLHTqkCHoVhQNFwbFPp6JRLl1dpLKfvpl64uuyDUb922HvHjUtFpAKI1ohbQ-MPKQyCymjiQ6JiDKClVCY8VgGUhEZiNhw68EYo1kiM650oE3ABRbYBuKHoJXPc3MEoI7DLFDC2jizQZpkIiPEGj9JcEYljlQHXH4LP32vmTRSH4FgnjpNpU5TaaOpDmg7aa-8WAu6A06_9ZU2xlamJKA2igxsfH38x7QTsBm6vr2-duwUtKpiYc7AhvqopmVx7tfRF8onyNk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLYQIMEObIOilZXhw05IBsd2HPs4UQrTSjuNAr1F_hWtB9IpCWjir8d2U6kIceBmKXEUvefn5_f8vu8B8N16F6WV4MhlgiHGDEZK0wIJKjAVhklnI4nrMBuNxHQqf7dg9YiFcc7F4jN3EobxLt_OzUNIlXkLD9QzAa21kTJG8AKutZJSEZxS2t5dJlieTkbX5z4GJOyEpqEjC3nhfWI7lVd7cHQsg4_v_KVPYKc9QcIfC5V_Bmuu3AUfVngF98BTP9Dhhk5WzsI_qrTz-9mTH15UscCrQYPKOXgWCs7_w7HfNO5bNCa8mzV_4bVrwsM6to9oajj2yx0GrAi6VVWARcG7mFBFN6UOlZHGf7o_i9TXdQfcDM4nZ5eobbKADGG8QdYfGSXhuiBc8MwSqlhBsVEGC5nqRBuqE5U66X2YELzIdCGNTaxLpMIK-1B8H6yX89J9AdCmpEiM8lYufJimhSoo9eZPM1xwjZnpguOl8PN_Cy6NPMYgWOZBU3nQVN5qqgs6QdorLy4E3QW9pb7y1tzqnCbcx5GJj7AP3ph2BLYuJ1fDfPhz9Osr2Cahi2-sJOuB9aZ6cIdg0zw2s7r6FtfUM2NqzCA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Randomized+Gradient-Free+Convex+Optimization+With+Set+Constraints+Over+Time-Varying+Weight-Unbalanced+Digraphs&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Zhu%2C+Yanan&rft.au=Li%2C+Qinghai&rft.au=Li%2C+Tao&rft.au=Wen%2C+Guanghui&rft.date=2025-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2334-329X&rft.volume=12&rft.issue=2&rft.spage=610&rft_id=info:doi/10.1109%2FTNSE.2024.3506732&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |