Distributed Randomized Gradient-Free Convex Optimization With Set Constraints Over Time-Varying Weight-Unbalanced Digraphs

This paper explores a class of distributed constrained convex optimization problems where the objective function is a sum of <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> convex local objective functions. These functions are characterized...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on network science and engineering Ročník 12; číslo 2; s. 610 - 622
Hlavní autori: Zhu, Yanan, Li, Qinghai, Li, Tao, Wen, Guanghui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.03.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2327-4697, 2334-329X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper explores a class of distributed constrained convex optimization problems where the objective function is a sum of <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> convex local objective functions. These functions are characterized by local non-smoothness yet adhere to Lipschitz continuity, and the optimization process is further constrained by <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> distinct closed convex sets. To delineate the structure of information exchange among agents, a series of time-varying weight-unbalance directed graphs are introduced. Furthermore, this study introduces a novel algorithm, distributed randomized gradient-free constrained optimization algorithm. This algorithm marks a significant advancement by substituting the conventional requirement for precise gradient or subgradient information in each iterative update with a random gradient-free oracle, thereby addressing scenarios where accurate gradient information is hard to obtain. A thorough convergence analysis is provided based on the smoothing parameters inherent in the local objective functions, the Lipschitz constants, and a series of standard assumptions. Significantly, the proposed algorithm can converge to an approximate optimal solution within a predetermined error threshold for the consisdered optimization problem, achieving the same convergence rate of <inline-formula><tex-math notation="LaTeX">{\mathcal O}(\frac{\ln (k)}{\sqrt{k} })</tex-math></inline-formula> as the general randomized gradient-free algorithms when the decay step size is selected appropriately. And when at least one of the local objective functions exhibits strong convexity, the proposed algorithm can achieve a faster convergence rate, <inline-formula><tex-math notation="LaTeX">{\mathcal O}(\frac{1}{k})</tex-math></inline-formula>. Finally, rigorous simulation results verify the correctness of theoretical findings.
AbstractList This paper explores a class of distributed constrained convex optimization problems where the objective function is a sum of <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> convex local objective functions. These functions are characterized by local non-smoothness yet adhere to Lipschitz continuity, and the optimization process is further constrained by <inline-formula><tex-math notation="LaTeX">N</tex-math></inline-formula> distinct closed convex sets. To delineate the structure of information exchange among agents, a series of time-varying weight-unbalance directed graphs are introduced. Furthermore, this study introduces a novel algorithm, distributed randomized gradient-free constrained optimization algorithm. This algorithm marks a significant advancement by substituting the conventional requirement for precise gradient or subgradient information in each iterative update with a random gradient-free oracle, thereby addressing scenarios where accurate gradient information is hard to obtain. A thorough convergence analysis is provided based on the smoothing parameters inherent in the local objective functions, the Lipschitz constants, and a series of standard assumptions. Significantly, the proposed algorithm can converge to an approximate optimal solution within a predetermined error threshold for the consisdered optimization problem, achieving the same convergence rate of <inline-formula><tex-math notation="LaTeX">{\mathcal O}(\frac{\ln (k)}{\sqrt{k} })</tex-math></inline-formula> as the general randomized gradient-free algorithms when the decay step size is selected appropriately. And when at least one of the local objective functions exhibits strong convexity, the proposed algorithm can achieve a faster convergence rate, <inline-formula><tex-math notation="LaTeX">{\mathcal O}(\frac{1}{k})</tex-math></inline-formula>. Finally, rigorous simulation results verify the correctness of theoretical findings.
This paper explores a class of distributed constrained convex optimization problems where the objective function is a sum of [Formula Omitted] convex local objective functions. These functions are characterized by local non-smoothness yet adhere to Lipschitz continuity, and the optimization process is further constrained by [Formula Omitted] distinct closed convex sets. To delineate the structure of information exchange among agents, a series of time-varying weight-unbalance directed graphs are introduced. Furthermore, this study introduces a novel algorithm, distributed randomized gradient-free constrained optimization algorithm. This algorithm marks a significant advancement by substituting the conventional requirement for precise gradient or subgradient information in each iterative update with a random gradient-free oracle, thereby addressing scenarios where accurate gradient information is hard to obtain. A thorough convergence analysis is provided based on the smoothing parameters inherent in the local objective functions, the Lipschitz constants, and a series of standard assumptions. Significantly, the proposed algorithm can converge to an approximate optimal solution within a predetermined error threshold for the consisdered optimization problem, achieving the same convergence rate of [Formula Omitted] as the general randomized gradient-free algorithms when the decay step size is selected appropriately. And when at least one of the local objective functions exhibits strong convexity, the proposed algorithm can achieve a faster convergence rate, [Formula Omitted]. Finally, rigorous simulation results verify the correctness of theoretical findings.
Author Zhu, Yanan
Li, Tao
Wen, Guanghui
Li, Qinghai
Author_xml – sequence: 1
  givenname: Yanan
  orcidid: 0000-0001-7980-6282
  surname: Zhu
  fullname: Zhu, Yanan
  email: ynzhu@nuist.edu.cn
  organization: School of Automation, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 2
  givenname: Qinghai
  surname: Li
  fullname: Li, Qinghai
  email: 202212490051@nuist.edu.cn
  organization: School of Automation, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 3
  givenname: Tao
  orcidid: 0000-0002-9190-0199
  surname: Li
  fullname: Li, Tao
  email: litaojia@nuist.edu.cn
  organization: School of Automation, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 4
  givenname: Guanghui
  orcidid: 0000-0003-0070-8597
  surname: Wen
  fullname: Wen, Guanghui
  email: wenguanghui@gmail.com
  organization: Department of Systems Science, School of Mathematics, Southeast University, Nanjing, China
BookMark eNpNkEtPAjEUhRujiYj8ABMXk7gu9jG006XhpQmRREDcTTozd6AEOtgWovx6ZwILV_ck95xzc787dG0rCwg9UNKllKjn-fts2GWExV3eI0JydoVajPMYc6a-rhvNJI6Fkreo4_2GEEJZIjjnLXQaGB-cyQ4BiuhD26LamVMtx04XBmzAIwcQ9St7hJ9oug-mXutgKhstTVhHMwjNsq7QxgYfTY_gornZAf7U7tfYVbQEs1oHvLCZ3mqb19UDs3J6v_b36KbUWw-dy2yjxWg477_iyXT81n-Z4JzFIuCCJEQxkZVMJEIWjOu45CTXOUlUL6NZzjOqe6AkTZJElDIrVV7QAqjSRBPIeBs9nXv3rvo-gA_ppjo4W59MORWKxZTJuHbRsyt3lfcOynTvzK5-IqUkbSinDeW0oZxeKNeZx3PGAMA_vxQyJpT_ARlBfFs
CODEN ITNSD5
Cites_doi 10.1007/s11432-020-3275-3
10.1007/s00158-004-0414-z
10.1109/TNSE.2020.2965999
10.1109/TNSE.2022.3155481
10.1109/TNSE.2021.3104513
10.1109/TAC.2019.2914025
10.1515/9781400841059
10.1016/j.automatica.2016.01.055
10.1109/TNSE.2022.3178107
10.1145/3128572.3140448
10.1016/j.automatica.2023.111328
10.1007/s10957-010-9737-7
10.1007/s10208-015-9296-2
10.1109/TCNS.2021.3112770
10.1109/TAC.2014.2364096
10.1109/TSMC.2021.3112691
10.1109/TCNS.2019.2915015
10.1109/TAC.2020.2972824
10.1002/rnc.3164
10.1109/TCNS.2020.3029996
10.1109/TSMC.2017.2757265
10.1109/JAS.2022.105923
10.1109/TNSE.2022.3195953
10.1016/j.automatica.2021.109899
10.1109/TCYB.2023.3284822
10.1109/TAC.2016.2610945
10.1109/TCYB.2019.2927725
10.1109/TAC.2023.3237975
10.1109/TCYB.2018.2890140
10.1109/TNSE.2023.3300736
10.1109/TAC.2020.2969721
10.1109/TCSII.2018.2878250
10.1109/TNSE.2023.3311779
10.1109/TCST.2016.2517574
10.1007/s10107-004-0552-5
10.1109/TAC.2021.3075669
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNSE.2024.3506732
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 622
ExternalDocumentID 10_1109_TNSE_2024_3506732
10767401
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62203224; U22B2046; 62325304; 62088101; 62373195
  funderid: 10.13039/501100001809
– fundername: Jiangsu Provincial Scientific Research Center of Applied Mathematics
  grantid: BK20233002
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c246t-d080926bf26867d23a4f30cac0895b1bc3b1a5e9718886f7bf9cd1de19a0a0eb3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001440170500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4697
IngestDate Mon Jun 30 09:51:11 EDT 2025
Sat Nov 29 08:19:02 EST 2025
Wed Aug 27 01:52:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-d080926bf26867d23a4f30cac0895b1bc3b1a5e9718886f7bf9cd1de19a0a0eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7980-6282
0000-0002-9190-0199
0000-0003-0070-8597
PQID 3169241274
PQPubID 2040409
PageCount 13
ParticipantIDs crossref_primary_10_1109_TNSE_2024_3506732
proquest_journals_3169241274
ieee_primary_10767401
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref31
Ruszczyski (ref36) 2006
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref22
  doi: 10.1007/s11432-020-3275-3
– ident: ref25
  doi: 10.1007/s00158-004-0414-z
– ident: ref4
  doi: 10.1109/TNSE.2020.2965999
– ident: ref18
  doi: 10.1109/TNSE.2022.3155481
– ident: ref1
  doi: 10.1109/TNSE.2021.3104513
– ident: ref32
  doi: 10.1109/TAC.2019.2914025
– volume-title: Nonlinear Optimization
  year: 2006
  ident: ref36
  doi: 10.1515/9781400841059
– ident: ref8
  doi: 10.1016/j.automatica.2016.01.055
– ident: ref11
  doi: 10.1109/TNSE.2022.3178107
– ident: ref24
  doi: 10.1145/3128572.3140448
– ident: ref34
  doi: 10.1016/j.automatica.2023.111328
– ident: ref35
  doi: 10.1007/s10957-010-9737-7
– ident: ref27
  doi: 10.1007/s10208-015-9296-2
– ident: ref3
  doi: 10.1109/TCNS.2021.3112770
– ident: ref19
  doi: 10.1109/TAC.2014.2364096
– ident: ref15
  doi: 10.1109/TSMC.2021.3112691
– ident: ref6
  doi: 10.1109/TCNS.2019.2915015
– ident: ref12
  doi: 10.1109/TAC.2020.2972824
– ident: ref28
  doi: 10.1002/rnc.3164
– ident: ref17
  doi: 10.1109/TCNS.2020.3029996
– ident: ref30
  doi: 10.1109/TSMC.2017.2757265
– ident: ref14
  doi: 10.1109/JAS.2022.105923
– ident: ref23
  doi: 10.1109/TNSE.2022.3195953
– ident: ref21
  doi: 10.1016/j.automatica.2021.109899
– ident: ref16
  doi: 10.1109/TCYB.2023.3284822
– ident: ref10
  doi: 10.1109/TAC.2016.2610945
– ident: ref9
  doi: 10.1109/TCYB.2019.2927725
– ident: ref33
  doi: 10.1109/TAC.2023.3237975
– ident: ref29
  doi: 10.1109/TCYB.2018.2890140
– ident: ref5
  doi: 10.1109/TNSE.2023.3300736
– ident: ref20
  doi: 10.1109/TAC.2020.2969721
– ident: ref7
  doi: 10.1109/TCSII.2018.2878250
– ident: ref13
  doi: 10.1109/TNSE.2023.3311779
– ident: ref2
  doi: 10.1109/TCST.2016.2517574
– ident: ref26
  doi: 10.1007/s10107-004-0552-5
– ident: ref31
  doi: 10.1109/TAC.2021.3075669
SSID ssj0001286333
Score 2.2982144
Snippet This paper explores a class of distributed constrained convex optimization problems where the objective function is a sum of <inline-formula><tex-math...
This paper explores a class of distributed constrained convex optimization problems where the objective function is a sum of [Formula Omitted] convex local...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 610
SubjectTerms Algorithms
Closed box
Constraints
Convergence
Convergence rate
Convex analysis
Convex functions
Convexity
Directed graphs
distributed multi-agent optimization
Graph theory
Linear programming
Lipschitz condition
Optimization
Prediction algorithms
randomized gradient-free
Smoothing methods
Smoothness
Stochastic processes
time-varying weight-unbalanced digraphs
Vectors
Title Distributed Randomized Gradient-Free Convex Optimization With Set Constraints Over Time-Varying Weight-Unbalanced Digraphs
URI https://ieeexplore.ieee.org/document/10767401
https://www.proquest.com/docview/3169241274
Volume 12
WOSCitedRecordID wos001440170500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2334-329X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286333
  issn: 2327-4697
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T-QwELYAUUBxwAFij4dcUJ1kLrETP0oELBRoQby7yLEnYovNoiScTvx6PN4gLTpR0FlKHEXz2TOe8XwzhBwKm-FlmGUe0pxlma2YdhoY9z4sIFWBjMmYD5dqNNJPT-a6J6tHLgwAxOQzOMJhvMv3U_eKobKww7H0DLK1FpWSM7LWXEBFSyFEf3OZJubP3ej2LHiAPDsSOfZj4Z9sT2ym8p8GjmZluPbNH1onP_rzIz2eAb5BFqD-SVbnqgpukrdTLIaLfazA0xtb--lk_BaG501M7-rYsAGgJ5hu_o9eBZUx6bmY9HHcPdNb6PBhG5tHdC29CoudIlOEPdgGSVH0MYZT2X1dYl6kC58-HcfC1-0WuR-e3Z1csL7FAnM8kx3z4cBouCwrLrVUngfoKpE46xJt8jItnShTm4MJFkxrWamyMs6nAVdjE5sER3ybLNXTGnYINUqA5E75zLtMWa6tABe8paASTWXTfEB-fwi_eJlV0iiiB5KYApEqEKmiR2pAtlDacy_OBD0gex94Ff1mawuRyuBFpsG__vXFtF2ywrFvb8wd2yNLXfMK-2TZ_e3GbXMQ19E7YfnJQg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUqWqnl0JaWim2B-tATkmliO459RAsLVZelguXjFjn2RN0DWZQEVO2vx-MN0laoh94sJY6iefaMZzxvhpBvwkq8DLPMQ5oxKW3FtNPAuPdhAeUVqJiMeTXOJxN9c2N-9WT1yIUBgJh8Bvs4jHf5fu7uMVQWdjiWnkG21stMSp4s6VorIRWthBD93WWamO_TycVR8AG53BcZdmThf1mf2E7lmQ6OhmX07j9_6T15258g6cES8g3yAuoPZH2lruBHsjjEcrjYyQo8Pbe1n9_OFmF43MQEr46NGgA6xITzP_QsKI3bno1Jr2fdb3oBHT5sY_uIrqVnYblT5IqwK9sgLYpex4Aqu6xLzIx04dOHs1j6ut0kl6Oj6fCE9U0WmONSdcyHI6Phqqy40ir3PIBXicRZl2iTlWnpRJnaDEywYVqrKi8r43wakDU2sUlwxT-RtXpewxahJheguMu99E7mlmsrwAV_KShFU9k0G5C9J-EXd8taGkX0QRJTIFIFIlX0SA3IJkp75cWloAdk-wmvot9ubSFSFfzINHjYn_8x7St5fTI9HRfjH5OfX8gbjl18YybZNlnrmnvYIa_cQzdrm924ph4BAHzMiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Randomized+Gradient-Free+Convex+Optimization+With+Set+Constraints+Over+Time-Varying+Weight-Unbalanced+Digraphs&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Zhu%2C+Yanan&rft.au=Li%2C+Qinghai&rft.au=Li%2C+Tao&rft.au=Wen%2C+Guanghui&rft.date=2025-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2334-329X&rft.volume=12&rft.issue=2&rft.spage=610&rft_id=info:doi/10.1109%2FTNSE.2024.3506732&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon