Engineering a Lightweight Deep Joint Source-Channel-Coding-Based Semantic Communication System
Deep joint source-channel coding (DeepJSCC) has emerged as a novel technology in semantic communication, coinciding with the increasing demand for the edge devices in the Internet of Things (IoT). Consequently, the deployment of DeepJSCC on edge devices has become a crucial research direction. Howev...
Uloženo v:
| Vydáno v: | IEEE internet of things journal Ročník 12; číslo 1; s. 458 - 471 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2327-4662, 2327-4662 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Deep joint source-channel coding (DeepJSCC) has emerged as a novel technology in semantic communication, coinciding with the increasing demand for the edge devices in the Internet of Things (IoT). Consequently, the deployment of DeepJSCC on edge devices has become a crucial research direction. However, DeepJSCC faces challenges related to channel fading. Moreover, implementing DeepJSCC on the edge devices poses challenges due to the constrained computational resources as well as the compatibility issue between DeepJSCC and digital systems. In this article, we devote to engineering the DeepJSCC system deployed on the edge devices. First, we propose a method named DeepJSCC with Ensemble learning (DeepJSCC-ES) to resist the channel fading. Then, we present a pruning algorithm called the DeepJSCC signal-to-noise ratio (SNR)-adaptive pruning method (DJSAP) to make the DeepJSCC network lightweight, reducing the computational demands on the edge nodes. Further, we propose a method called the simulated fixed-point quantization training based on soft quantization function (SFPQSQ) to tackle the compatibility issue between DeepJSCC and digital systems. Finally, we deploy the whole DeepJSCC system on the edge devices and conduct experiments to test the DeepJSCC system. The results of simulations show that the proposed DeepJSCC-ES system outperforms the baseline DeepJSCC, particularly excelling in low SNR conditions. Furthermore, the parameter size of the pruned model using DJSAP is compressed by 93.37% while the average structural similarity index metric (SSIM) decreases only by 0.92% compared with the baseline DeepJSCC. Additionally, the SFPQSQ works better than the ordinary quantization methods in tackling the compatibility issue between DeepJSCC and digital systems. The experiment results also show that our proposed system can serve as a feasible solution for practical deployment on the edge devices. |
|---|---|
| AbstractList | Deep joint source-channel coding (DeepJSCC) has emerged as a novel technology in semantic communication, coinciding with the increasing demand for the edge devices in the Internet of Things (IoT). Consequently, the deployment of DeepJSCC on edge devices has become a crucial research direction. However, DeepJSCC faces challenges related to channel fading. Moreover, implementing DeepJSCC on the edge devices poses challenges due to the constrained computational resources as well as the compatibility issue between DeepJSCC and digital systems. In this article, we devote to engineering the DeepJSCC system deployed on the edge devices. First, we propose a method named DeepJSCC with Ensemble learning (DeepJSCC-ES) to resist the channel fading. Then, we present a pruning algorithm called the DeepJSCC signal-to-noise ratio (SNR)-adaptive pruning method (DJSAP) to make the DeepJSCC network lightweight, reducing the computational demands on the edge nodes. Further, we propose a method called the simulated fixed-point quantization training based on soft quantization function (SFPQSQ) to tackle the compatibility issue between DeepJSCC and digital systems. Finally, we deploy the whole DeepJSCC system on the edge devices and conduct experiments to test the DeepJSCC system. The results of simulations show that the proposed DeepJSCC-ES system outperforms the baseline DeepJSCC, particularly excelling in low SNR conditions. Furthermore, the parameter size of the pruned model using DJSAP is compressed by 93.37% while the average structural similarity index metric (SSIM) decreases only by 0.92% compared with the baseline DeepJSCC. Additionally, the SFPQSQ works better than the ordinary quantization methods in tackling the compatibility issue between DeepJSCC and digital systems. The experiment results also show that our proposed system can serve as a feasible solution for practical deployment on the edge devices. |
| Author | Zhang, Weihan Meng, Siqi Wu, Shaohua Zhang, Qinyu He, Jinghang |
| Author_xml | – sequence: 1 givenname: Weihan orcidid: 0009-0000-8630-2234 surname: Zhang fullname: Zhang, Weihan email: 200210730@stu.hit.edu.cn organization: School of Electronics and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China – sequence: 2 givenname: Shaohua orcidid: 0000-0002-6950-0594 surname: Wu fullname: Wu, Shaohua email: hitwush@hit.edu.cn organization: Guangdong Provincial Key Laboratory of Aerospace Communication and Networking Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, China – sequence: 3 givenname: Siqi orcidid: 0000-0002-9273-1163 surname: Meng fullname: Meng, Siqi email: mengsiqi@stu.hit.edu.cn organization: School of Electronics and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China – sequence: 4 givenname: Jinghang orcidid: 0009-0008-0337-8881 surname: He fullname: He, Jinghang email: 190210406@stu.hit.edu.cn organization: School of Electronics and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China – sequence: 5 givenname: Qinyu orcidid: 0000-0001-9272-0475 surname: Zhang fullname: Zhang, Qinyu email: zqy@hit.edu.cn organization: Guangdong Provincial Key Laboratory of Aerospace Communication and Networking Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, China |
| BookMark | eNpNkE1PAjEQhhuDiYj8ABMPTTwv9mPbXY66okJIOIBXm9IOUMK2uF1i-PeWwIFLp5M878zkuUcdHzwg9EjJgFIyfJmMZ4sBIywf8FxyKdgN6jLOiiyXknWu_neoH-OWEJJigg5lF_2M_Np5gMb5NdZ46tab9g9OL34H2ONJcL7F83BoDGTVRnsPu6wKNuHZm45g8Rxq7VtncBXq-uCd0a0LHs-PsYX6Ad2u9C5C_1J76PtjtKi-sunsc1y9TjPDctlm2lLNwRpJiOBLu5JlyagdasFFUS4htYIJu4RcWEkZA84TDgxEaXJqKOM99Hyeu2_C7wFiq7bpZJ9WKk7zQrCCM5ooeqZME2JsYKX2jat1c1SUqJNJdTKpTibVxWTKPJ0zDgCueFlyWUr-D9chcOA |
| CODEN | IITJAU |
| Cites_doi | 10.1109/COMST.2022.3223224 10.1007/s11277-022-10111-7 10.1109/TCCN.2022.3151935 10.1109/WCNC55385.2023.10119015 10.1109/JSAIT.2022.3231042 10.1109/JIOT.2022.3201017 10.1109/TCCN.2019.2919300 10.1109/JSAIT.2020.2987203 10.1109/LWC.2023.3256006 10.1109/GLOBECOM54140.2023.10436878 10.1109/LSP.2022.3184251 10.1109/JIOT.2017.2767608 10.1109/ICC45041.2023.10278961 10.1109/ICCC54389.2021.9674297 10.1109/MWC.010.2300180 10.23919/JCC.2022.03.007 10.1109/tcomm.2024.3386577 10.1109/SPAWC48557.2020.9154306 10.1109/JSAC.2017.2760186 10.1109/comst.2024.3416309 10.1109/GCWkshps56602.2022.10008561 10.1109/ICSIP57908.2023.10270968 10.1109/LCOMM.2023.3329533 10.1109/CCNC51644.2023.10060488 10.1109/TCCN.2023.3326302 10.1109/mnet.2024.3418554 10.1109/JSAC.2020.3018807 10.1109/IOTM.001.2300167 10.1109/LWC.2022.3204837 10.1109/LSP.2021.3113827 10.1109/ICASSP43922.2022.9746335 10.1109/JSAC.2023.3288238 10.1109/ICASSP39728.2021.9414037 10.1109/mwc.014.2300492 10.1109/ICC45041.2023.10279541 10.1109/MCOM.004.2200819 10.1109/ICC45041.2023.10278612 10.1109/PIMRC56721.2023.10293843 10.1109/JIOT.2022.3220677 10.1109/SPAWC53906.2023.10304536 10.1109/JSAC.2022.3221991 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2024.3463652 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 471 |
| ExternalDocumentID | 10_1109_JIOT_2024_3463652 10683686 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2022B1515120002 funderid: 10.13039/501100001321 – fundername: National Natural Science Foundation of China grantid: 62027802 funderid: 10.13039/501100001809 – fundername: Major Key Project of PCL grantid: PCL2024A01 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE 4.4 AAYXX AGSQL CITATION EJD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c246t-ad1a3edc60053bdf68821d9a53578be688525dbe45d6122e33a3ee2e58c41c123 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001381411000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4662 |
| IngestDate | Mon Jun 30 13:00:36 EDT 2025 Sat Nov 29 01:44:10 EST 2025 Wed Aug 27 02:30:24 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c246t-ad1a3edc60053bdf68821d9a53578be688525dbe45d6122e33a3ee2e58c41c123 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0000-8630-2234 0009-0008-0337-8881 0000-0001-9272-0475 0000-0002-6950-0594 0000-0002-9273-1163 |
| PQID | 3147527321 |
| PQPubID | 2040421 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_JIOT_2024_3463652 proquest_journals_3147527321 ieee_primary_10683686 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Wang (ref27) 2022 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref28 Molchanov (ref44) 2016 ref29 ref8 ref7 Liu (ref45) 2021 ref9 ref4 Han (ref43) 2015 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref1 doi: 10.1109/COMST.2022.3223224 – ident: ref23 doi: 10.1007/s11277-022-10111-7 – year: 2021 ident: ref45 article-title: AdaPruner: Adaptive channel pruning and effective weights inheritance publication-title: arXiv:2109.06397 – ident: ref33 doi: 10.1109/TCCN.2022.3151935 – ident: ref35 doi: 10.1109/WCNC55385.2023.10119015 – ident: ref38 doi: 10.1109/JSAIT.2022.3231042 – ident: ref20 doi: 10.1109/JIOT.2022.3201017 – ident: ref8 doi: 10.1109/TCCN.2019.2919300 – ident: ref12 doi: 10.1109/JSAIT.2020.2987203 – ident: ref21 doi: 10.1109/LWC.2023.3256006 – ident: ref14 doi: 10.1109/GLOBECOM54140.2023.10436878 – ident: ref40 doi: 10.1109/LSP.2022.3184251 – ident: ref18 doi: 10.1109/JIOT.2017.2767608 – ident: ref31 doi: 10.1109/ICC45041.2023.10278961 – ident: ref29 doi: 10.1109/ICCC54389.2021.9674297 – ident: ref42 doi: 10.1109/MWC.010.2300180 – ident: ref7 doi: 10.23919/JCC.2022.03.007 – year: 2022 ident: ref27 article-title: SNN-SC: A spiking semantic communication framework for feature transmission publication-title: arXiv:2210.06836 – ident: ref39 doi: 10.1109/tcomm.2024.3386577 – ident: ref26 doi: 10.1109/SPAWC48557.2020.9154306 – ident: ref16 doi: 10.1109/JSAC.2017.2760186 – ident: ref2 doi: 10.1109/comst.2024.3416309 – ident: ref10 doi: 10.1109/GCWkshps56602.2022.10008561 – ident: ref32 doi: 10.1109/ICSIP57908.2023.10270968 – ident: ref36 doi: 10.1109/LCOMM.2023.3329533 – year: 2015 ident: ref43 article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding publication-title: arXiv:1510.00149 – ident: ref37 doi: 10.1109/CCNC51644.2023.10060488 – ident: ref25 doi: 10.1109/TCCN.2023.3326302 – ident: ref4 doi: 10.1109/mnet.2024.3418554 – ident: ref19 doi: 10.1109/JSAC.2020.3018807 – ident: ref22 doi: 10.1109/IOTM.001.2300167 – ident: ref30 doi: 10.1109/LWC.2022.3204837 – ident: ref24 doi: 10.1109/LSP.2021.3113827 – ident: ref15 doi: 10.1109/ICASSP43922.2022.9746335 – ident: ref9 doi: 10.1109/JSAC.2023.3288238 – ident: ref28 doi: 10.1109/ICASSP39728.2021.9414037 – year: 2016 ident: ref44 article-title: Pruning convolutional neural networks for resource efficient transfer learning publication-title: arXiv:1611.06440 – ident: ref5 doi: 10.1109/mwc.014.2300492 – ident: ref6 doi: 10.1109/ICC45041.2023.10279541 – ident: ref13 doi: 10.1109/MCOM.004.2200819 – ident: ref41 doi: 10.1109/ICC45041.2023.10278612 – ident: ref11 doi: 10.1109/PIMRC56721.2023.10293843 – ident: ref17 doi: 10.1109/JIOT.2022.3220677 – ident: ref34 doi: 10.1109/SPAWC53906.2023.10304536 – ident: ref3 doi: 10.1109/JSAC.2022.3221991 |
| SSID | ssj0001105196 |
| Score | 2.334865 |
| Snippet | Deep joint source-channel coding (DeepJSCC) has emerged as a novel technology in semantic communication, coinciding with the increasing demand for the edge... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 458 |
| SubjectTerms | Algorithms Coding Communications systems Compatibility Deep joint source-channel coding (DeepJSCC) Devices Digital systems edge devices Ensemble learning Fading Image reconstruction Internet of Things Internet of Things (IoT) Lightweight lightweight model Mathematical models quantization Quantization (signal) Rician channels Rician fading channel Semantics Signal to noise ratio Training Weight reduction |
| Title | Engineering a Lightweight Deep Joint Source-Channel-Coding-Based Semantic Communication System |
| URI | https://ieeexplore.ieee.org/document/10683686 https://www.proquest.com/docview/3147527321 |
| Volume | 12 |
| WOSCitedRecordID | wos001381411000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5uePDi_DFxOiUHT0Lm0qZpc9Tp0DGmsAk7WdLkFQbajq3Tf98k7XBDPHhraQrlfX393nvp-x5CV5AIxQEYSVikCFPAiQykJioEIUWqAz91SA_D0SiaTsVL1azuemEAwP18Bh176Pbyda5WtlRmPJxHPo94DdXCMCybtX4KKtRGI7zauaRdcTN4ep6YDNBjHd_KYgXeFve4YSq_vsCOVvqNfz7QAdqv4kd8WwJ-iHYgO0KN9WwGXLnqMXrbEBrEEg9tDv7lyqD4HmCOB_ksK_DYle6JbTHI4J30cstk5M4wm8Zj-DBWnym81UOCS4nzJnrtP0x6j6SapUCUx3hBpKbSB6249bpEp9xE1lQLGVi1mwTMaeAFOgEWaBPzeOD7Zjl4EESKUWXo7QTVszyDU4RTJpIkpZbIzDWTMUmTJQrGJOWJCehkC12vrRzPS8mM2KUaXRFbSGILSVxB0kJNa9aNhaVFW6i9BiauvGoZ-5SFVjDOo2d_3HaO9jw7oNfVSNqoXixWcIF21WcxWy4u3QvzDfn6wKs |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gV58i6ur5uBJiJo0yTZHn6y6roIreLKkyRQWtLvoqn_fJO2iIh68tTSFMl-n38yk8w3ALubaKkRBc5FaKiwqaqRx1LZQG104mRQR6U6r200fHvRt3awee2EQMf58hvvhMO7lu4F9C6Uy7-EqTVSqJmFaCsFZ1a71VVJhIR5R9d4lO9QHlxc3PZ8DcrGfBGEsyX-wTxyn8usbHInlfOGfj7QI83UESY4qyJdgAstlWBhPZyC1s67A4zepQWJIJ2ThH7EQSk4Rh-Ry0C9H5C4W72loMijxiZ4MApfRY89tjtzhs7d735IfXSSkEjlfhfvzs95Jm9bTFKjlQo2occwk6KwKfpe7QvnYmjltZNC7ydGfSi5djkI6H_VwTBK_HDnK1ApmPcGtwVQ5KHEdSCF0nhcsUJm_5nMm4_NELYRhKvchnWnA3tjK2bASzchisnGoswBJFiDJakgasBrM-m1hZdEGNMfAZLVfvWYJE60gGcfZxh-37cBsu3fdyToX3atNmONhXG-smDRhavTyhlswY99H_deX7fjyfAIrnsPy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+a+Lightweight+Deep+Joint+Source-Channel-Coding-Based+Semantic+Communication+System&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Zhang%2C+Weihan&rft.au=Wu%2C+Shaohua&rft.au=Meng%2C+Siqi&rft.au=He%2C+Jinghang&rft.date=2025-01-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=12&rft.issue=1&rft.spage=458&rft.epage=471&rft_id=info:doi/10.1109%2FJIOT.2024.3463652&rft.externalDocID=10683686 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |